On the Number of Hamilton Cycles in Bounded Degree Graphs

Heidi Gebauer
{"title":"On the Number of Hamilton Cycles in Bounded Degree Graphs","authors":"Heidi Gebauer","doi":"10.1137/1.9781611972986.8","DOIUrl":null,"url":null,"abstract":"The main contribution of this paper is a new approach for enumerating Hamilton cycles in bounded degree graphs -- deriving thereby extremal bounds. \n \nWe describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276n), improving on Eppstein's previous bound. The resulting new upper bound of O(1.276n) for the maximum number of Hamilton cycles in 3-regular n-vertex graphs gets close to the best known lower bound of Ω(1.259n). Our method differs from Eppstein's in that he considers in each step a new graph and modifies it, while we fix (at the very beginning) one Hamilton cycle C and then proceed around C, succesively producing partial Hamilton cycles. \n \nOur approach can also be used to show that the number of Hamilton cycles of a 4-regular n-vertex graph is at most O(18n/5) ≤ O(1.783n), which improves a previous bound by Sharir and Welzl. This result is complemented by a lower bound of 48n/8 ≥ 1.622n. \n \nThen we present an algorithm which finds the minimum weight Hamilton cycle of a given 4-regular graph in time √3n · poly(n) = O(1.733n), improving a previous result of Eppstein. This algorithm can be modified to compute the number of Hamilton cycles in the same time bound and to enumerate all Hamilton cycles in time (√3n +hc(G))·poly(n) with hc(G) denoting the number of Hamilton cycles of the given graph G. So our upper bound of O(1.783n) for the number of Hamilton cycles serves also as a time bound for enumeration. \n \nUsing similar techniques as in the 3-regular case we establish upper bounds for the number of Hamilton cycles in 5-regular graphs and in graphs of average degree 3, 4, and 5.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972986.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

The main contribution of this paper is a new approach for enumerating Hamilton cycles in bounded degree graphs -- deriving thereby extremal bounds. We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276n), improving on Eppstein's previous bound. The resulting new upper bound of O(1.276n) for the maximum number of Hamilton cycles in 3-regular n-vertex graphs gets close to the best known lower bound of Ω(1.259n). Our method differs from Eppstein's in that he considers in each step a new graph and modifies it, while we fix (at the very beginning) one Hamilton cycle C and then proceed around C, succesively producing partial Hamilton cycles. Our approach can also be used to show that the number of Hamilton cycles of a 4-regular n-vertex graph is at most O(18n/5) ≤ O(1.783n), which improves a previous bound by Sharir and Welzl. This result is complemented by a lower bound of 48n/8 ≥ 1.622n. Then we present an algorithm which finds the minimum weight Hamilton cycle of a given 4-regular graph in time √3n · poly(n) = O(1.733n), improving a previous result of Eppstein. This algorithm can be modified to compute the number of Hamilton cycles in the same time bound and to enumerate all Hamilton cycles in time (√3n +hc(G))·poly(n) with hc(G) denoting the number of Hamilton cycles of the given graph G. So our upper bound of O(1.783n) for the number of Hamilton cycles serves also as a time bound for enumeration. Using similar techniques as in the 3-regular case we establish upper bounds for the number of Hamilton cycles in 5-regular graphs and in graphs of average degree 3, 4, and 5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于有界度图中哈密顿环的个数
本文的主要贡献是在有界度图中枚举Hamilton环的一种新方法——由此推导出极值界。我们描述了一种算法,该算法在O(1.276n)时间内枚举给定的3-正则n顶点图的所有Hamilton环,改进了Eppstein的前界。由此得到的3正则n顶点图中Hamilton环最大数目的新上界O(1.276n)接近已知的下界Ω(1.259n)。我们的方法与Eppstein的不同之处在于,他在每一步中都考虑一个新的图并对其进行修改,而我们(在一开始)固定一个汉密尔顿环C,然后围绕C继续,依次产生部分汉密尔顿环。我们的方法还可以用来证明一个4-正则n顶点图的Hamilton环的个数不超过O(18n/5)≤O(1.783n),这改进了Sharir和Welzl之前的一个界。这个结果被48n/8≥1.622n的下界所补充。然后,我们提出了一种算法,该算法在√3n·poly(n) = O(1.733n)的时间内找到给定4正则图的最小权汉密尔顿环,改进了先前的Eppstein结果。该算法可以修改为计算同一时间界内的Hamilton圈数,并在时间(√3n +hc(G))·poly(n)内枚举所有Hamilton圈,其中hc(G)表示给定图G的Hamilton圈数,因此我们给出的Hamilton圈数的上界O(1.783n)也可以作为枚举的时间界。使用与3正则情况类似的技术,我们建立了5正则图和平均次数为3、4和5的图中Hamilton环数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protection Number of Recursive Trees Ranked Schröder Trees QuickSort: Improved right-tail asymptotics for the limiting distribution, and large deviations (Extended Abstract) Subcritical random hypergraphs, high-order components, and hypertrees Esthetic Numbers and Lifting Restrictions on the Analysis of Summatory Functions of Regular Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1