Learning Fingerprint Orientation Fields Using Continuous Restricted Boltzmann Machines

M. Sahasrabudhe, A. Namboodiri
{"title":"Learning Fingerprint Orientation Fields Using Continuous Restricted Boltzmann Machines","authors":"M. Sahasrabudhe, A. Namboodiri","doi":"10.1109/ACPR.2013.37","DOIUrl":null,"url":null,"abstract":"We aim to learn local orientation field patterns in fingerprints and correct distorted field patterns in noisy fingerprint images. This is formulated as a learning problem and achieved using two continuous restricted Boltzmann machines. The learnt orientation fields are then used in conjunction with traditional Gabor based algorithms for fingerprint enhancement. Orientation fields extracted by gradient-based methods are local, and do not consider neighboring orientations. If some amount of noise is present in a fingerprint, then these methods perform poorly when enhancing the image, affecting fingerprint matching. This paper presents a method to correct the resulting noisy regions over patches of the fingerprint by training two continuous restricted Boltzmann machines. The continuous RBMs are trained with clean fingerprint images and applied to overlapping patches of the input fingerprint. Experimental results show that one can successfully restore patches of noisy fingerprint images.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We aim to learn local orientation field patterns in fingerprints and correct distorted field patterns in noisy fingerprint images. This is formulated as a learning problem and achieved using two continuous restricted Boltzmann machines. The learnt orientation fields are then used in conjunction with traditional Gabor based algorithms for fingerprint enhancement. Orientation fields extracted by gradient-based methods are local, and do not consider neighboring orientations. If some amount of noise is present in a fingerprint, then these methods perform poorly when enhancing the image, affecting fingerprint matching. This paper presents a method to correct the resulting noisy regions over patches of the fingerprint by training two continuous restricted Boltzmann machines. The continuous RBMs are trained with clean fingerprint images and applied to overlapping patches of the input fingerprint. Experimental results show that one can successfully restore patches of noisy fingerprint images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用连续受限玻尔兹曼机学习指纹方向场
我们的目标是学习指纹的局部方向场模式,并校正噪声指纹图像中的畸变场模式。这被表述为一个学习问题,并使用两个连续受限玻尔兹曼机来实现。然后将学习到的方向场与传统的基于Gabor的指纹增强算法结合使用。基于梯度的方法提取的方向场是局部的,不考虑相邻的方向。如果指纹中存在一定数量的噪声,那么这些方法在增强图像时表现不佳,影响指纹匹配。本文提出了一种通过训练两个连续受限玻尔兹曼机来校正指纹图像斑块上产生的噪声区域的方法。用干净的指纹图像训练连续rbm,并将其应用于输入指纹的重叠块上。实验结果表明,该方法可以成功地恢复带有噪声的指纹图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Compensation of Radial Distortion by Minimizing Entropy of Histogram of Oriented Gradients A Robust and Efficient Minutia-Based Fingerprint Matching Algorithm Sclera Recognition - A Survey A Non-local Sparse Model for Intrinsic Images Classification Based on Boolean Algebra and Its Application to the Prediction of Recurrence of Liver Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1