Context-Aware Destination and Time-To-Destination Prediction Using Machine learning

Athanasios Tsiligkaridis, Jing Zhang, I. Paschalidis, Hiroshi Taguchi, S. Sakajo, D. Nikovski
{"title":"Context-Aware Destination and Time-To-Destination Prediction Using Machine learning","authors":"Athanasios Tsiligkaridis, Jing Zhang, I. Paschalidis, Hiroshi Taguchi, S. Sakajo, D. Nikovski","doi":"10.1109/ISC255366.2022.9922593","DOIUrl":null,"url":null,"abstract":"The rapid adoption of Internet-connected devices (i.e., smart phones, smart cars, etc.) in today's society has given rise to a massive amount of data that can be harnessed by intelligent systems to learn and model the behavior of people. One useful set of such data is movement data, which can readily be obtained via GPS or motion-detection sensors, and which can be used to create models of user movement. One relevant application task based on this type of data is destination prediction, where movement data are used to form highly customized models that can forecast intended user destinations based on partially observed trajectories. In this work, we present a two-stage predictive model for destination prediction and Time-To-Destination (TTD) estimation using movement trajectories and contextual information. Our two-stage approach uses a Transformer-based architecture to predict an intended destination and a regression model to estimate how many steps must be traversed before a destination is reached. We showcase experimental results on various trajectory datasets and show that our proposed approach is able to yield significant destination prediction improvements over previous state-of-the-art methods and can also produce accurate TTD estimates.","PeriodicalId":277015,"journal":{"name":"2022 IEEE International Smart Cities Conference (ISC2)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC255366.2022.9922593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The rapid adoption of Internet-connected devices (i.e., smart phones, smart cars, etc.) in today's society has given rise to a massive amount of data that can be harnessed by intelligent systems to learn and model the behavior of people. One useful set of such data is movement data, which can readily be obtained via GPS or motion-detection sensors, and which can be used to create models of user movement. One relevant application task based on this type of data is destination prediction, where movement data are used to form highly customized models that can forecast intended user destinations based on partially observed trajectories. In this work, we present a two-stage predictive model for destination prediction and Time-To-Destination (TTD) estimation using movement trajectories and contextual information. Our two-stage approach uses a Transformer-based architecture to predict an intended destination and a regression model to estimate how many steps must be traversed before a destination is reached. We showcase experimental results on various trajectory datasets and show that our proposed approach is able to yield significant destination prediction improvements over previous state-of-the-art methods and can also produce accurate TTD estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习的上下文感知目的地和时间到目的地预测
在当今社会,互联网连接设备(即智能手机、智能汽车等)的迅速普及产生了大量的数据,智能系统可以利用这些数据来学习和模拟人们的行为。其中一组有用的数据是运动数据,可以通过GPS或运动检测传感器轻松获得,并可用于创建用户运动模型。基于这类数据的一个相关应用任务是目的地预测,其中运动数据用于形成高度定制的模型,可以根据部分观察到的轨迹预测预期的用户目的地。在这项工作中,我们提出了一个基于运动轨迹和上下文信息的两阶段预测模型,用于目的地预测和到达目的地时间(TTD)估计。我们的两阶段方法使用基于transformer的体系结构来预测预期的目的地,并使用回归模型来估计在到达目的地之前必须遍历的步骤。我们展示了在各种轨迹数据集上的实验结果,并表明我们提出的方法能够比以前最先进的方法产生显著的目的地预测改进,并且还可以产生准确的TTD估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Technology by Older Adults in El Paso, Texas during COVID-19: Purposes, Challenges, and Opportunities Sharing-DNA: a data-driven tool to map the attitude towards sharing services across Europe Development of Hybrid Photovoltaic-based Nanogrids for the Energy Rehabilitation of Public Buildings: The BERLIN Project Advanced Short-Term Net Load Forecasting for Renewable-Based Microgrids Multiple Pedestrian Tracking Framework using Deep Learning-based Multiscale Image Analysis for Stationary-camera Video Surveillance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1