Discrete multiscale Bayesian image reconstruction

T. Frese, C. Bouman, K. Sauer
{"title":"Discrete multiscale Bayesian image reconstruction","authors":"T. Frese, C. Bouman, K. Sauer","doi":"10.1109/ACSSC.1998.751613","DOIUrl":null,"url":null,"abstract":"Statistical and discrete-valued methods can substantially improve the reconstruction quality by incorporating prior information about both the imaging system and the object being imaged. A statistical method shown to perform well in the tomographic setting is Bayesian MAP estimation. However, computing the MAP estimate in the tomographic domain is a computationally involved optimization problem. Furthermore, discrete-valued MAP reconstruction requires accurate knowledge of the density or emission levels in the cross-section. In this paper we present an efficient multiscale algorithm for discrete-valued MAP reconstruction including estimation of the discrete levels. Experimental results indicate that the multiscale algorithm has improved convergence behaviour over fixed scale reconstruction and is more robust with respect to local minima.","PeriodicalId":393743,"journal":{"name":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1998.751613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Statistical and discrete-valued methods can substantially improve the reconstruction quality by incorporating prior information about both the imaging system and the object being imaged. A statistical method shown to perform well in the tomographic setting is Bayesian MAP estimation. However, computing the MAP estimate in the tomographic domain is a computationally involved optimization problem. Furthermore, discrete-valued MAP reconstruction requires accurate knowledge of the density or emission levels in the cross-section. In this paper we present an efficient multiscale algorithm for discrete-valued MAP reconstruction including estimation of the discrete levels. Experimental results indicate that the multiscale algorithm has improved convergence behaviour over fixed scale reconstruction and is more robust with respect to local minima.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散多尺度贝叶斯图像重建
统计和离散值方法通过结合成像系统和被成像对象的先验信息,可以大大提高重建质量。在层析成像中表现良好的统计方法是贝叶斯MAP估计。然而,在层析成像域中计算MAP估计是一个涉及计算的优化问题。此外,离散值MAP重建需要准确了解截面上的密度或发射水平。本文提出了一种有效的多尺度离散值MAP重建算法,包括离散水平估计。实验结果表明,该算法比固定尺度重构具有更好的收敛性,对局部最小值具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbo multiuser detection Optimal joint azimuth-elevation and signal-array response estimation using parallel factor analysis Adaptive sidelobe blanker: a novel method of performance evaluation and threshold setting in the presence of inhomogeneous clutter Optimal architectures for massively parallel implementation of hard real-time beamformers Low complexity M-hypotheses detection: M vectors case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1