J. Benhamou, M. Jami, A. Mezrhab, D. Henry, V. Botton
{"title":"Numerical simulation study of acoustic waves propagation and streaming using MRT-lattice Boltzmann method","authors":"J. Benhamou, M. Jami, A. Mezrhab, D. Henry, V. Botton","doi":"10.1080/15502287.2022.2050844","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a numerical investigation of the propagation of acoustic waves generated by a linear acoustic source using the lattice Boltzmann method (LBM). The main objective of this study is to compute the sound pressure and acoustic force produced by a rectangular sound source located at the center of the west wall of a rectangular cavity, filled with water. The sound source is discretized into a set of point sources emitting waves according to the acoustic point source method. The interference between the generated cylindrical waves creates an acoustic beam in the cavity. An analytical study is carried out to validate these numerical results. The error between the numerical and analytical calculations of the wave propagation is also discussed to confirm the validity of the numerical approach. In a second step, the acoustic streaming is calculated by introducing the acoustic force into the LBM code. A characteristic flow structure with two recirculating cells is thus obtained.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2022.2050844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract This paper presents a numerical investigation of the propagation of acoustic waves generated by a linear acoustic source using the lattice Boltzmann method (LBM). The main objective of this study is to compute the sound pressure and acoustic force produced by a rectangular sound source located at the center of the west wall of a rectangular cavity, filled with water. The sound source is discretized into a set of point sources emitting waves according to the acoustic point source method. The interference between the generated cylindrical waves creates an acoustic beam in the cavity. An analytical study is carried out to validate these numerical results. The error between the numerical and analytical calculations of the wave propagation is also discussed to confirm the validity of the numerical approach. In a second step, the acoustic streaming is calculated by introducing the acoustic force into the LBM code. A characteristic flow structure with two recirculating cells is thus obtained.