Optimal placement of FACTS devices using probabilistic Particle Swarm Optimization

K. Sundareswaran, P. S. Nayak, Ch Durga Venkatesh, H. B
{"title":"Optimal placement of FACTS devices using probabilistic Particle Swarm Optimization","authors":"K. Sundareswaran, P. S. Nayak, Ch Durga Venkatesh, H. B","doi":"10.1109/ISET-INDIA.2011.6145355","DOIUrl":null,"url":null,"abstract":"The identification of optimal locations for 3 Static VAr Compensators (SVCs) in an IEEE 30 bus system is considered in this paper. The problem is drafted as an optimization task and the solution is achieved through a novel optimization method termed as probabilistic Particle Swarm Optimization (PPSO). The proposed algorithm is a suitable modification of the standard Particle Swarm Optimization (PSO) technique by incorporating probabilistic particle movement with discrete positions. The performance of the new algorithm is illustrated through extensive computer simulations.","PeriodicalId":265646,"journal":{"name":"ISGT2011-India","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISGT2011-India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISET-INDIA.2011.6145355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The identification of optimal locations for 3 Static VAr Compensators (SVCs) in an IEEE 30 bus system is considered in this paper. The problem is drafted as an optimization task and the solution is achieved through a novel optimization method termed as probabilistic Particle Swarm Optimization (PPSO). The proposed algorithm is a suitable modification of the standard Particle Swarm Optimization (PSO) technique by incorporating probabilistic particle movement with discrete positions. The performance of the new algorithm is illustrated through extensive computer simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于概率粒子群优化的FACTS器件的最优放置
研究了ieee30总线系统中3个静态无功补偿器(SVCs)的最佳位置辨识问题。该问题被起草为一个优化任务,并通过一种称为概率粒子群优化(PPSO)的新型优化方法来求解。该算法是对标准粒子群优化(PSO)技术的适当改进,将粒子的概率运动与离散位置结合起来。通过大量的计算机仿真说明了新算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of demand response using mixed pumped storage hydro plant A new expression for power factor under nonsinusoidal conditions A reformed capacity subscription market in restructured power systems Smart grid implementation across the globe: A survey Enhancement of voltage stability index of distribution system by network reconfiguration including static load model and daily load curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1