Optimal PID-self regulating controller for micro hydro-fuel cell green Energy Management Scheme

A. Sharaf, A. El-Gammal
{"title":"Optimal PID-self regulating controller for micro hydro-fuel cell green Energy Management Scheme","authors":"A. Sharaf, A. El-Gammal","doi":"10.1109/EPEC.2010.5697246","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Electric Energy Management compensator based on Multi Objective Particle Swarm Optimization search technique MOPSO for use in hydrogen and island electricity generation. It combines a fuel cell power source and a micro hydro water turbine. The novel control strategy is designed to achieve the high-efficiency coordinated operation of the two individual power sources and to regulate current and voltage for maximum utilization, without compromising the power quality and performance of the overall system. To achieve these conflicting objectives, a novel dual action Modulated Power Filter and Compensator at the AC bus (MPFC) and Green Power Filter GPF scheme at the DC bus using real time self regulating error tracking scheme for voltage stability, energy conservation, loss reduction, power factor correction, and power quality enhancement for hybrid multi source energy utilization systems. Multi Objective Optimization MOPSO technique is used to find the optimal control gain settings that dynamically minimize the global dynamic error.","PeriodicalId":393869,"journal":{"name":"2010 IEEE Electrical Power & Energy Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electrical Power & Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEC.2010.5697246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a novel Electric Energy Management compensator based on Multi Objective Particle Swarm Optimization search technique MOPSO for use in hydrogen and island electricity generation. It combines a fuel cell power source and a micro hydro water turbine. The novel control strategy is designed to achieve the high-efficiency coordinated operation of the two individual power sources and to regulate current and voltage for maximum utilization, without compromising the power quality and performance of the overall system. To achieve these conflicting objectives, a novel dual action Modulated Power Filter and Compensator at the AC bus (MPFC) and Green Power Filter GPF scheme at the DC bus using real time self regulating error tracking scheme for voltage stability, energy conservation, loss reduction, power factor correction, and power quality enhancement for hybrid multi source energy utilization systems. Multi Objective Optimization MOPSO technique is used to find the optimal control gain settings that dynamically minimize the global dynamic error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微型氢燃料电池绿色能源管理方案的最优pid自调节控制器
提出了一种基于多目标粒子群优化搜索技术的新型电能管理补偿器,并将其应用于氢气发电和海岛发电。它结合了燃料电池电源和微型水力涡轮机。该控制策略旨在实现两个独立电源的高效协调运行,并在不影响整个系统的电能质量和性能的情况下调节电流和电压以达到最大利用率。为了实现这些相互冲突的目标,一种新型的双作用调制电源滤波器和补偿器在交流总线(MPFC)和绿色电源滤波器GPF方案在直流总线上使用实时自调节误差跟踪方案,用于混合多源能源利用系统的电压稳定,节能,降低损耗,功率因数校正和电能质量提高。采用多目标优化技术寻找全局动态误差最小的最优控制增益设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Static security assessment using radial basis function neural networks based on growing and pruning method Fuzzy unit commitment using the Ant Colony Search Algorithm Transient states simulation in power plant auxiliary electrical system A centralized controller to control power demands of electric water heaters for peek shaving of total house-hold power demands Wind power forecasting based on econometrics theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1