{"title":"Carbon-Origami : Controlling 3D Shapes and Microstructure","authors":"M. Madou","doi":"10.3390/micromachines2021-09557","DOIUrl":null,"url":null,"abstract":"Over the last two decades, we have gained more and more insight into how to convert patterned polymer precursors into predicable 3D carbon shapes using pyrolysis/carbonization (carbon origami are a more recent example). Over the last four years, we have started gaining control over the internal carbon microstructure and its functionality. The key to the latter is a precise control of the polymer precursor chains and the exact polymer atomic composition of the polymer before and during pyrolysis. Contradicting Rosalind Franklin, we have found that it is possible to graphitize even non-graphitizing carbons, simply by applying mechanical stresses to align the polymer precursor chains and stabilizing them in position before pyrolysis. Perhaps the most surprising outcome of this work is the demonstration of the conversion of PAN fibers through pyrolysis into turbostratic graphene-suspended wires with diameters as small as 2 nanometers. The suspended graphene bridges have a conductivity similar to that of multiwall carbon nanotubes (MWCNTs), a Young’s modulus of >400 GPa, and electrochemically the material behaves similarly to graphene doped with nitrogen. The latter material represents a very electroactive electrode ideally suited for energy and sensing applications. The current fabrication process for graphene doped with nitrogen is lengthy and complicated; ours is a one-step, simple process that is easily scalable.","PeriodicalId":137788,"journal":{"name":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/micromachines2021-09557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last two decades, we have gained more and more insight into how to convert patterned polymer precursors into predicable 3D carbon shapes using pyrolysis/carbonization (carbon origami are a more recent example). Over the last four years, we have started gaining control over the internal carbon microstructure and its functionality. The key to the latter is a precise control of the polymer precursor chains and the exact polymer atomic composition of the polymer before and during pyrolysis. Contradicting Rosalind Franklin, we have found that it is possible to graphitize even non-graphitizing carbons, simply by applying mechanical stresses to align the polymer precursor chains and stabilizing them in position before pyrolysis. Perhaps the most surprising outcome of this work is the demonstration of the conversion of PAN fibers through pyrolysis into turbostratic graphene-suspended wires with diameters as small as 2 nanometers. The suspended graphene bridges have a conductivity similar to that of multiwall carbon nanotubes (MWCNTs), a Young’s modulus of >400 GPa, and electrochemically the material behaves similarly to graphene doped with nitrogen. The latter material represents a very electroactive electrode ideally suited for energy and sensing applications. The current fabrication process for graphene doped with nitrogen is lengthy and complicated; ours is a one-step, simple process that is easily scalable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳折纸:控制3D形状和微观结构
在过去的二十年里,我们越来越深入地了解了如何利用热解/碳化将图案聚合物前体转化为可预测的3D碳形状(碳折纸是最近的一个例子)。在过去的四年里,我们已经开始控制内部碳的微观结构及其功能。后者的关键是在热解前和热解过程中对聚合物前体链和聚合物原子组成的精确控制。与罗莎琳德·富兰克林相反,我们发现石墨化甚至非石墨化碳是可能的,只需在热解前施加机械应力使聚合物前体链对齐并将其稳定在原位。也许这项工作最令人惊讶的结果是PAN纤维通过热解转化为直径小至2纳米的涡层石墨烯悬浮丝的演示。悬浮石墨烯桥的电导率与多壁碳纳米管(MWCNTs)相似,杨氏模量>400 GPa,电化学性能与掺杂氮的石墨烯相似。后一种材料代表了一种非常适合于能量和传感应用的电活性电极。目前氮掺杂石墨烯的制备工艺冗长复杂;我们的流程是一步,简单,易于扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanoscopic Biosensors in Microfluidics Magneto-Catalytic Janus Micromotors for Selective Inactivation of Bacteria Biofilms Rapid lipid content screening in Neochloris Oleoabundans by carbon-based dielectrophoresis Lab-on-chip platform for on-field analysis of Grapevine leafroll-associated virus 3 Magnetically actuated glaucoma drainage device with adjustable flow properties after implantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1