The recursive hessian sketch for adaptive filtering

Robin Scheibler, M. Vetterli
{"title":"The recursive hessian sketch for adaptive filtering","authors":"Robin Scheibler, M. Vetterli","doi":"10.1109/ICASSP.2016.7471659","DOIUrl":null,"url":null,"abstract":"We introduce in this paper the recursive Hessian sketch, a new adaptive filtering algorithm based on sketching the same exponentially weighted least squares problem solved by the recursive least squares algorithm. The algorithm maintains a number of sketches of the inverse autocorrelation matrix and recursively updates them at random intervals. These are in turn used to update the unknown filter estimate. The complexity of the proposed algorithm compares favorably to that of recursive least squares. The convergence properties of this algorithm are studied through extensive numerical experiments. With an appropriate choice or parameters, its convergence speed falls between that of least mean squares and recursive least squares adaptive filters, with less computations than the latter.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7471659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce in this paper the recursive Hessian sketch, a new adaptive filtering algorithm based on sketching the same exponentially weighted least squares problem solved by the recursive least squares algorithm. The algorithm maintains a number of sketches of the inverse autocorrelation matrix and recursively updates them at random intervals. These are in turn used to update the unknown filter estimate. The complexity of the proposed algorithm compares favorably to that of recursive least squares. The convergence properties of this algorithm are studied through extensive numerical experiments. With an appropriate choice or parameters, its convergence speed falls between that of least mean squares and recursive least squares adaptive filters, with less computations than the latter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应滤波的递归hessian草图
递归Hessian sketch是一种新的自适应滤波算法,它基于对递归最小二乘算法解决的指数加权最小二乘问题进行速写。该算法保留了一些逆自相关矩阵的草图,并以随机间隔递归地更新它们。这些依次用于更新未知的过滤器估计。该算法的复杂度优于递推最小二乘算法。通过大量的数值实验研究了该算法的收敛性。在适当选择参数的情况下,其收敛速度介于最小均二乘和递推最小二乘自适应滤波器之间,计算量小于递推最小二乘自适应滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1