A fuzzy spectral clustering for lossless and multiresolution coding of hyperspectral images

K. Siala, A. Benazza-Benyahia
{"title":"A fuzzy spectral clustering for lossless and multiresolution coding of hyperspectral images","authors":"K. Siala, A. Benazza-Benyahia","doi":"10.1109/ISSPA.2005.1580236","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a two-stage algorithm for hyperspectral image coding in a multiresolution way. The first stage consists in classifying the spectral components into separate clusters sharing similar characteristics. For this purpose, we have applied a fuzzy clustering algorithm which allows the clusters to have a flexible number of components. In the second stage, a vector lifting scheme is applied within each cluster in order to exploit simultaneously the spatial and spectral redundancies. A selective process is also applied to switch between inter-component and intracomponent coding of a given component. Experiments carried out on AVIRIS images indicate the outperformance of the proposed method w.r.t. the state-of-art coders.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"38 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1580236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a two-stage algorithm for hyperspectral image coding in a multiresolution way. The first stage consists in classifying the spectral components into separate clusters sharing similar characteristics. For this purpose, we have applied a fuzzy clustering algorithm which allows the clusters to have a flexible number of components. In the second stage, a vector lifting scheme is applied within each cluster in order to exploit simultaneously the spatial and spectral redundancies. A selective process is also applied to switch between inter-component and intracomponent coding of a given component. Experiments carried out on AVIRIS images indicate the outperformance of the proposed method w.r.t. the state-of-art coders.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱图像无损多分辨率编码的模糊光谱聚类
本文提出了一种多分辨率高光谱图像编码的两阶段算法。第一阶段包括将光谱成分分类到具有相似特征的单独的星团中。为此,我们应用了一种模糊聚类算法,该算法允许聚类具有灵活数量的组件。在第二阶段,在每个簇内应用矢量提升方案,以同时利用空间和频谱冗余。选择过程还用于在给定组件的组件间编码和组件内编码之间切换。在AVIRIS图像上进行的实验表明,所提出的方法比最先进的编码器具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urban site path loss prediction for mobile communications employing stratospheric platforms Mask constrained beam pattern synthesis for large arrays Neural network approaches to nonlinear blind source separation On the design of equiripple multidimensional FIR digital filters Improved Huffman code tables for H.263/H.263+ based video compression applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1