Achieving elasticity for cloud MapReduce jobs

K. Salah, J. A. Calero
{"title":"Achieving elasticity for cloud MapReduce jobs","authors":"K. Salah, J. A. Calero","doi":"10.1109/CloudNet.2013.6710577","DOIUrl":null,"url":null,"abstract":"These days, both the cloud computing paradigm and MapReduce programming framework have become key enablers for running big data analytics and large-scale compute- and data-intensive applications. Achieving proper elasticity for cloud MapReduce jobs is a critical research problem that has been overlooked. In this paper, we focus on how to achieve proper elasticity for MapReduce jobs when executed on cloud clusters. In particular, we present an analytical queueing model that can be used to determine at any given time and under different workload conditions the minimal number of mappers and reducers needed to satisfy the Service Level Objective (SLO) response time.","PeriodicalId":262262,"journal":{"name":"2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 2nd International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet.2013.6710577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

These days, both the cloud computing paradigm and MapReduce programming framework have become key enablers for running big data analytics and large-scale compute- and data-intensive applications. Achieving proper elasticity for cloud MapReduce jobs is a critical research problem that has been overlooked. In this paper, we focus on how to achieve proper elasticity for MapReduce jobs when executed on cloud clusters. In particular, we present an analytical queueing model that can be used to determine at any given time and under different workload conditions the minimal number of mappers and reducers needed to satisfy the Service Level Objective (SLO) response time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现云MapReduce作业的弹性
如今,云计算范式和MapReduce编程框架已经成为运行大数据分析和大规模计算和数据密集型应用程序的关键推动者。为云MapReduce作业实现适当的弹性是一个被忽视的关键研究问题。在本文中,我们重点关注如何在云集群上执行MapReduce作业时实现适当的弹性。特别是,我们提出了一个分析排队模型,该模型可用于在任何给定时间和不同工作负载条件下确定满足服务水平目标(Service Level Objective, SLO)响应时间所需的最小映射器和减少器数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Request dispatching for cheap energy prices in cloud data centers Trust management system for Opportunistic Cloud Services Autonomic scaling of Cloud Computing resources using BN-based prediction models Service-oriented trust and reputation management system for multi-tier cloud Automatic server role identification for cloud infrastructure construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1