On-Line Signature Verification Using Hidden Markov Models with Number of States Estimation from the Signature Duration

J. M. Pascual-Gaspar, Valentín Cardeñoso-Payo
{"title":"On-Line Signature Verification Using Hidden Markov Models with Number of States Estimation from the Signature Duration","authors":"J. M. Pascual-Gaspar, Valentín Cardeñoso-Payo","doi":"10.1109/BCC.2007.4430541","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel HMM-based automatic signature verification system where the number of states is estimated from the duration of the signatures. This structural user-dependent approach has allowed to obtain high verification rates with a small number of enrolment samples and using only the two basic local x-y geometric features plus their first time derivatives. The proposed system has been tested with the MCYT database reporting EERs of 2.09% with random forgeries and 6.14% with skilled forgeries using only three signatures for enrolment.","PeriodicalId":389417,"journal":{"name":"2007 Biometrics Symposium","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2007.4430541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we present a novel HMM-based automatic signature verification system where the number of states is estimated from the duration of the signatures. This structural user-dependent approach has allowed to obtain high verification rates with a small number of enrolment samples and using only the two basic local x-y geometric features plus their first time derivatives. The proposed system has been tested with the MCYT database reporting EERs of 2.09% with random forgeries and 6.14% with skilled forgeries using only three signatures for enrolment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于状态数估计的隐马尔可夫在线签名验证
本文提出了一种新的基于hmm的自动签名验证系统,该系统根据签名的持续时间估计状态数。这种结构上依赖于用户的方法使得只使用两个基本的局部x-y几何特征加上它们的第一次导数,就可以用少量的登记样本获得高的验证率。该系统已在MCYT数据库中进行了测试,报告随机伪造的EERs为2.09%,熟练伪造的EERs为6.14%,仅使用三个签名进行登记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Illumination Normalization Based on Simplified Local Binary Patterns for A Face Verification System Non-Metric Biometric Clustering Face Pose Correction With Eyeglasses and Occlusions Removal Towards Unattended and Privacy Protected Border Control Reducing Speaker Model Search Space in Speaker Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1