Self-Supervised Remote Sensing Image Retrieval

Kane Walter, Matthew J. Gibson, A. Sowmya
{"title":"Self-Supervised Remote Sensing Image Retrieval","authors":"Kane Walter, Matthew J. Gibson, A. Sowmya","doi":"10.1109/IGARSS39084.2020.9323294","DOIUrl":null,"url":null,"abstract":"Current remote sensing platforms generate a vast amount of imagery but the best current methods to index and retrieve that data require expensive and difficult to procure labels. In this paper, we aim to address this problem by presenting a performant content based image retrieval (CBIR) system that is capable of indexing and retrieval using only unlabelled data. We investigate the use of self-supervised learning, a method for end-to-end learning of visual features from large datasets. In particular, we investigate the performance of four state-of-the-art self-supervised learning methods: variational autoencoders, bidirectional GANs, colourisation networks and DeepCluster, and evaluate the quality of the representations learned on remote sensing CBIR problems. Experiments on two very high resolution datasets show that the best of these methods, DeepCluster, is able to achieve near parity with supervised transfer learning despite not using any label information.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Current remote sensing platforms generate a vast amount of imagery but the best current methods to index and retrieve that data require expensive and difficult to procure labels. In this paper, we aim to address this problem by presenting a performant content based image retrieval (CBIR) system that is capable of indexing and retrieval using only unlabelled data. We investigate the use of self-supervised learning, a method for end-to-end learning of visual features from large datasets. In particular, we investigate the performance of four state-of-the-art self-supervised learning methods: variational autoencoders, bidirectional GANs, colourisation networks and DeepCluster, and evaluate the quality of the representations learned on remote sensing CBIR problems. Experiments on two very high resolution datasets show that the best of these methods, DeepCluster, is able to achieve near parity with supervised transfer learning despite not using any label information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自监督遥感图像检索
目前的遥感平台产生大量图像,但目前索引和检索这些数据的最佳方法需要昂贵且难以获得的标签。在本文中,我们的目标是通过提出一个高性能的基于内容的图像检索(CBIR)系统来解决这个问题,该系统能够仅使用未标记的数据进行索引和检索。我们研究了自监督学习的使用,这是一种从大数据集中端到端学习视觉特征的方法。特别地,我们研究了四种最先进的自监督学习方法的性能:变分自编码器、双向gan、着色网络和DeepCluster,并评估了在遥感CBIR问题上学习到的表示的质量。在两个非常高分辨率的数据集上的实验表明,尽管不使用任何标签信息,但这些方法中最好的DeepCluster能够实现与监督迁移学习的接近平价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1