Towards fuzzy QoS driven service selection with user requirements

Jiajun Xu, Lin Guo, Ruxia Zhang, Yin Zhang, Hualang Hu, Fei Wang, Zhiyuan Pei
{"title":"Towards fuzzy QoS driven service selection with user requirements","authors":"Jiajun Xu, Lin Guo, Ruxia Zhang, Yin Zhang, Hualang Hu, Fei Wang, Zhiyuan Pei","doi":"10.1109/PIC.2017.8359548","DOIUrl":null,"url":null,"abstract":"Many QoS-aware service selection approaches assume that the QoS attributes are crisp values and the actual user requirements are not taken into consideration, when the service-oriented applications are constructed. As a result, users searching result may not be correct and good, because there are uncertainties in the data and the optimal solutions but not satisfying some requirements may not be acceptable to some users. In this paper, we propose to use Fuzzy Set Theory (FST) and fuzzy genetic algorithm (FGA) for QoS-based service selection. FST is applied to specify the triangular fuzzy-valued description of the QoS properties. A FGA is proposed to solve the QoS-aware service composition problem, which considers the actual QoS requirements from users in the selection process. Empirical comparisons with two algorithms on different scales of composite service indicate that FGA is highly competitive regards to searching capability.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Many QoS-aware service selection approaches assume that the QoS attributes are crisp values and the actual user requirements are not taken into consideration, when the service-oriented applications are constructed. As a result, users searching result may not be correct and good, because there are uncertainties in the data and the optimal solutions but not satisfying some requirements may not be acceptable to some users. In this paper, we propose to use Fuzzy Set Theory (FST) and fuzzy genetic algorithm (FGA) for QoS-based service selection. FST is applied to specify the triangular fuzzy-valued description of the QoS properties. A FGA is proposed to solve the QoS-aware service composition problem, which considers the actual QoS requirements from users in the selection process. Empirical comparisons with two algorithms on different scales of composite service indicate that FGA is highly competitive regards to searching capability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向模糊QoS驱动的用户需求服务选择
在构造面向服务的应用程序时,许多支持QoS的服务选择方法都假定QoS属性是清晰的值,而不考虑实际的用户需求。因此,用户的搜索结果可能不是正确和良好的,因为数据中存在不确定性,而不满足某些要求的最优解可能是某些用户无法接受的。在本文中,我们提出使用模糊集合理论(FST)和模糊遗传算法(FGA)进行基于qos的服务选择。应用FST来指定QoS属性的三角模糊值描述。为了解决感知QoS的服务组合问题,提出了一种FGA算法,在选择过程中考虑用户的实际QoS需求。两种算法在不同规模的复合服务上的经验比较表明,FGA在搜索能力方面具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation method and decision support of network education based on association rules ACER: An adaptive context-aware ensemble regression model for airfare price prediction An improved constraint model for team tactical position selection in games Trust your wallet: A new online wallet architecture for Bitcoin An approach based on decision tree for analysis of behavior with combined cycle power plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1