Exploiting various information for knowledge element relation recognition

Wei Wang, Q. Zheng, Jun Liu, Yingying Chen, Pengfei Tang
{"title":"Exploiting various information for knowledge element relation recognition","authors":"Wei Wang, Q. Zheng, Jun Liu, Yingying Chen, Pengfei Tang","doi":"10.1109/GRC.2009.5255057","DOIUrl":null,"url":null,"abstract":"Knowledge element relation recognition is to mine intrinsic and hidden relations, i.e., preorder, analogy and illustration from knowledge element set, which can be used in knowledge organization and knowledge navigation system. This paper focuses on what information is employed to recognize knowledge element relations. First, a formal definition of knowledge element and the types of relation are given. Next, an algorithm for knowledge element sort is proposed to gain the sequence number of knowledge element. Then, information of term, type, distance, knowledge element relation level and document level is selected to represent candidate relation instances. Evaluation on the four data sets related to “computer” discipline, using Support Vector Machines, shows that term, type and distance features contribute to most of the performance improvement, and incorporation of all features can achieve excellent performance of relation recognition, whose F1 Micro-averaged measure is above 83%.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Knowledge element relation recognition is to mine intrinsic and hidden relations, i.e., preorder, analogy and illustration from knowledge element set, which can be used in knowledge organization and knowledge navigation system. This paper focuses on what information is employed to recognize knowledge element relations. First, a formal definition of knowledge element and the types of relation are given. Next, an algorithm for knowledge element sort is proposed to gain the sequence number of knowledge element. Then, information of term, type, distance, knowledge element relation level and document level is selected to represent candidate relation instances. Evaluation on the four data sets related to “computer” discipline, using Support Vector Machines, shows that term, type and distance features contribute to most of the performance improvement, and incorporation of all features can achieve excellent performance of relation recognition, whose F1 Micro-averaged measure is above 83%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用各种信息进行知识元关系识别
知识元素关系识别就是从知识元素集中挖掘出内在的和隐藏的关系,即预定关系、类比关系和说明关系,这些关系可用于知识组织和知识导航系统。本文关注的是利用哪些信息来识别知识元素关系。首先给出了知识元的形式化定义和关系类型;其次,提出了一种知识元素排序算法来获取知识元素的序号。然后,选取术语、类型、距离、知识元素关系等级和文档等级等信息表示候选关系实例。利用支持向量机(Support Vector Machines)对“计算机”学科相关的4个数据集进行评价,结果表明,术语、类型和距离特征对性能的提升贡献最大,结合所有特征可以获得优异的关系识别性能,其F1微平均测度达到83%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On SP-closedness in L-topological spaces A comprehensive evaluation method based on extenics and rough set A two-step approach for solving the flexible job shop scheduling problem A fast and accurate collaborative filter Attribute Grid Computer based on Qualitative Mapping and its application in pattern Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1