Prediksi Indeks Harga Produsen Pertanian Karet Di Indonesia Menggunakan Metode LSTM

Rahmad Firdaus
{"title":"Prediksi Indeks Harga Produsen Pertanian Karet Di Indonesia Menggunakan Metode LSTM","authors":"Rahmad Firdaus","doi":"10.37859/jf.v13i01.4851","DOIUrl":null,"url":null,"abstract":"Natural rubber is one of the plantation commodities that has a fairly wide market in international trade because it is needed as a raw material for various industries. Rubber producer prices need to be predicted because producer prices are the first price in the lead from other price levels. So that information about price changes at the producer level is very important as an early warning system against price fluctuations at the next price level. The Long Short-Term Memory (LSTM) algorithm was chosen because it is considered capable of accommodating the problem of predicting the price index of producers in the rubber agriculture sector being faced because, LSTM itself is one of the developments of a neural network, which can be used for time series data modeling and is capable of continuous learning. . Parameter analysis carried out in this study is the number of hidden neurons, epochs and batch size. The best combination of parameters produced in this study is 50 hidden neurons, 25 epochs and batch size 10. The best values ​​generated in this study are the RMSE value of training data 384.20 and the value of RMSE testing 306.01 and the value of MAPE training 1.25% and the value of MAPE testing 1.09%  The best MAPE error calculation in this study is \"Predicting the Price Index of Agricultural Rubber Producers in Indonesia Using the Long Short Term Memory Method\" which produces the best MAPE. These results indicate that the MAPE error can be said to be very good because the best MAPE value produced is below 10%.","PeriodicalId":145740,"journal":{"name":"JURNAL FASILKOM","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL FASILKOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37859/jf.v13i01.4851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Natural rubber is one of the plantation commodities that has a fairly wide market in international trade because it is needed as a raw material for various industries. Rubber producer prices need to be predicted because producer prices are the first price in the lead from other price levels. So that information about price changes at the producer level is very important as an early warning system against price fluctuations at the next price level. The Long Short-Term Memory (LSTM) algorithm was chosen because it is considered capable of accommodating the problem of predicting the price index of producers in the rubber agriculture sector being faced because, LSTM itself is one of the developments of a neural network, which can be used for time series data modeling and is capable of continuous learning. . Parameter analysis carried out in this study is the number of hidden neurons, epochs and batch size. The best combination of parameters produced in this study is 50 hidden neurons, 25 epochs and batch size 10. The best values ​​generated in this study are the RMSE value of training data 384.20 and the value of RMSE testing 306.01 and the value of MAPE training 1.25% and the value of MAPE testing 1.09%  The best MAPE error calculation in this study is "Predicting the Price Index of Agricultural Rubber Producers in Indonesia Using the Long Short Term Memory Method" which produces the best MAPE. These results indicate that the MAPE error can be said to be very good because the best MAPE value produced is below 10%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用LSTM方法预测印尼橡胶生产商的价格指数
天然橡胶是在国际贸易中具有相当广阔市场的种植商品之一,因为它是各种工业所需的原料。橡胶生产者价格需要预测,因为生产者价格是领先于其他价格水平的第一价格。因此,生产者层面的价格变化信息是非常重要的,因为它是一个预警系统,可以防范下一个价格水平的价格波动。选择长短期记忆(LSTM)算法是因为它能够适应橡胶农业部门面临的生产者价格指数预测问题,因为LSTM本身是神经网络的一种发展,可以用于时间序列数据建模,并且能够持续学习。本研究进行的参数分析是隐藏神经元的数量、epoch和batch大小。本研究产生的最佳参数组合为50个隐藏神经元,25个epoch,批大小为10。本研究生成的最佳值为训练数据的RMSE值384.20,RMSE检验值306.01,MAPE训练值1.25%,MAPE检验值1.09%。本研究中最佳MAPE误差计算为“使用长短期记忆法预测印度尼西亚农业橡胶生产商价格指数”,产生最佳MAPE。这些结果表明,MAPE误差可以说是非常好的,因为产生的最佳MAPE值小于10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisis Opini Publik Terhadap Undang-Undang KUHP Tahun 2022 Menggunakan Algoritma Naïve Bayes Classifier Analisis sentimen terhadap pelayanan Kesehatan berdasarkan ulasan Google Maps menggunakan BERT Peran Penggunaan IoT dengan Machine Learning dalam Penanganan Pandemi COVID-19: Systematic Literatur Review Pengaruh Implementasi Enterprise Resource Planning (ERP) Apache Ofbiz Pada Kinerja UMKM Renyah.an Penentuan Pola Peminjaman Buku Di Perpustakaan Dengan Verifikasi Hasil Data Perhitungan Algoritma Apriori Menggunakan Algoritma Equivalence Class Transformation (ECLAT)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1