Using Non-topological Node Attributes to Improve Results of Link Prediction in Social Networks

Yu Zhang, Feng Li, Bin Xu, Kening Gao, Ge Yu
{"title":"Using Non-topological Node Attributes to Improve Results of Link Prediction in Social Networks","authors":"Yu Zhang, Feng Li, Bin Xu, Kening Gao, Ge Yu","doi":"10.1109/WISA.2012.21","DOIUrl":null,"url":null,"abstract":"This paper examines the importance of non-topological node attributes for link prediction in social networks. Rank method and supervised learning method were introduced to show the role of the node attributes in link prediction respectively. A rule for choosing the appropriate node attributes was discussed and a method for aggregating two node attributes was proposed. The result of the experiments on a blog dataset showed that using non-topological node attributes make a better performance in link prediction.","PeriodicalId":313228,"journal":{"name":"2012 Ninth Web Information Systems and Applications Conference","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2012.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper examines the importance of non-topological node attributes for link prediction in social networks. Rank method and supervised learning method were introduced to show the role of the node attributes in link prediction respectively. A rule for choosing the appropriate node attributes was discussed and a method for aggregating two node attributes was proposed. The result of the experiments on a blog dataset showed that using non-topological node attributes make a better performance in link prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非拓扑节点属性改进社交网络中的链接预测结果
本文探讨了非拓扑节点属性对社交网络中链接预测的重要性。引入秩法和监督学习法分别展示节点属性在链路预测中的作用。讨论了节点属性选择的规则,提出了节点属性聚合的方法。在博客数据集上的实验结果表明,使用非拓扑节点属性在链接预测中具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary Analysis of Operation System-of-Systems (SoS) Network Based on Simulated Data Research of Cache Mechanism in Mobile Data Management OpinMiner: Extracting Feature-Opinion Pairs with Dependency Grammar from Chinese Product Reviews A Deep Web Database Sampling Method Based on High Correlation Keywords Richly Semantical Keyword Searching over Relational Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1