Identification of fuzzy controller for rapid Nickel-Cadmium batteries charger through fuzzy c-means clustering algorithm

A. Khosla, S. Kumar, K. K. Aggarwal
{"title":"Identification of fuzzy controller for rapid Nickel-Cadmium batteries charger through fuzzy c-means clustering algorithm","authors":"A. Khosla, S. Kumar, K. K. Aggarwal","doi":"10.1109/NAFIPS.2003.1226842","DOIUrl":null,"url":null,"abstract":"This paper presents the identification of fuzzy controller for rapid Nickel-Cadmium (Ni-Cd) batteries charger by applying fuzzy c-means (FCM) clustering algorithm on the input-output training data. The identification of fuzzy model using input-output data consists of two parts: structure identification and parameter estimation. Structure identification involves the determination of antecedent and consequent variables and in parameter estimation step, antecedents' membership functions and rule consequents are determined. Fuzzy clustering is used to partition the training data into regions that leads to creation of local linear models expressed by fuzzy rules. The data for the batteries charger has been obtained through experimentation with an objective to charge the batteries as fast as possible. For the premise part identification, the input space is partitioned by FCM clustering and the consequent parameters for each rule are calculated as least-square estimate. The Takagi-Sugeno-Kang (TSK) model obtained through FCM clustering algorithm is further fine tuned through hybrid learning.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents the identification of fuzzy controller for rapid Nickel-Cadmium (Ni-Cd) batteries charger by applying fuzzy c-means (FCM) clustering algorithm on the input-output training data. The identification of fuzzy model using input-output data consists of two parts: structure identification and parameter estimation. Structure identification involves the determination of antecedent and consequent variables and in parameter estimation step, antecedents' membership functions and rule consequents are determined. Fuzzy clustering is used to partition the training data into regions that leads to creation of local linear models expressed by fuzzy rules. The data for the batteries charger has been obtained through experimentation with an objective to charge the batteries as fast as possible. For the premise part identification, the input space is partitioned by FCM clustering and the consequent parameters for each rule are calculated as least-square estimate. The Takagi-Sugeno-Kang (TSK) model obtained through FCM clustering algorithm is further fine tuned through hybrid learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊c均值聚类算法的镍镉电池快速充电器模糊控制器辨识
本文采用模糊c-均值聚类算法对输入输出训练数据进行模糊控制器辨识。基于输入输出数据的模糊模型辨识包括结构辨识和参数估计两部分。结构识别涉及到前因变量和后因变量的确定,在参数估计步骤中,确定前因变量的隶属函数和规则结果。使用模糊聚类将训练数据划分为区域,从而创建由模糊规则表示的局部线性模型。通过实验获得了电池充电器的相关数据,目的是使电池尽可能快地充电。对于前提部件识别,采用FCM聚类对输入空间进行分割,并以最小二乘估计的方式计算每个规则的后续参数。通过FCM聚类算法得到的Takagi-Sugeno-Kang (TSK)模型通过混合学习进一步微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy-rough nearest-neighbor classification approach Fault detection and diagnosis in turbine engines using fuzzy logic How the number of measured dimensions affects fuzzy causal measures of vitamin therapy for hyperhomocysteinemia in stroke patients The fuzzy rough approximation decomposability Fuzzy-neuro system for bridge health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1