DH-FBK @ HaSpeeDe2: Italian Hate Speech Detection via Self-Training and Oversampling

E. Leonardelli, S. Menini, Sara Tonelli
{"title":"DH-FBK @ HaSpeeDe2: Italian Hate Speech Detection via Self-Training and Oversampling","authors":"E. Leonardelli, S. Menini, Sara Tonelli","doi":"10.4000/BOOKS.AACCADEMIA.6934","DOIUrl":null,"url":null,"abstract":"We describe in this paper the system submitted by the DH-FBK team to the HaSpeeDe evaluation task, and dealing with Italian hate speech detection (Task A). While we adopt a standard approach for fine-tuning AlBERTo, the Italian BERT model trained on tweets, we propose to improve the final classification performance by two additional steps, i.e. self-training and oversampling. Indeed, we extend the initial training data with additional silver data, carefully sampled from domain-specific tweets and obtained after first training our system only with the task training data. Then, we retrain the classifier by merging silver and task training data but oversampling the latter, so that the obtained model is more robust to possible inconsistencies in the silver data. With this configuration, we obtain a macro-averaged F1 of 0.753 on tweets, and 0.702 on news headlines.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We describe in this paper the system submitted by the DH-FBK team to the HaSpeeDe evaluation task, and dealing with Italian hate speech detection (Task A). While we adopt a standard approach for fine-tuning AlBERTo, the Italian BERT model trained on tweets, we propose to improve the final classification performance by two additional steps, i.e. self-training and oversampling. Indeed, we extend the initial training data with additional silver data, carefully sampled from domain-specific tweets and obtained after first training our system only with the task training data. Then, we retrain the classifier by merging silver and task training data but oversampling the latter, so that the obtained model is more robust to possible inconsistencies in the silver data. With this configuration, we obtain a macro-averaged F1 of 0.753 on tweets, and 0.702 on news headlines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自我训练和过采样的意大利语仇恨言论检测
我们在本文中描述了DH-FBK团队提交给HaSpeeDe评估任务的系统,并处理意大利语仇恨言论检测(任务A)。虽然我们采用标准方法对AlBERTo进行微调,但我们建议通过两个额外的步骤来提高最终的分类性能,即自我训练和过采样。实际上,我们用额外的银数据扩展了初始训练数据,这些数据是从特定领域的推文中仔细采样的,并且在第一次训练我们的系统后仅使用任务训练数据获得。然后,我们通过合并银和任务训练数据来重新训练分类器,但对后者进行过采样,以便获得的模型对银数据中可能存在的不一致性更具鲁棒性。通过这种配置,我们获得tweet上的宏观平均F1为0.753,新闻标题上的宏观平均F1为0.702。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 Diachronic Lexical Semantics (DIACR-Ita) Task QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian (short paper) By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) HaSpeeDe 2 @ EVALITA2020: Overview of the EVALITA 2020 Hate Speech Detection Task KIPoS @ EVALITA2020: Overview of the Task on KIParla Part of Speech Tagging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1