GraphGen: An FPGA Framework for Vertex-Centric Graph Computation

E. Nurvitadhi, G. Weisz, Yu Wang, Skand Hurkat, Marie Nguyen, J. Hoe, José F. Martínez, Carlos Guestrin
{"title":"GraphGen: An FPGA Framework for Vertex-Centric Graph Computation","authors":"E. Nurvitadhi, G. Weisz, Yu Wang, Skand Hurkat, Marie Nguyen, J. Hoe, José F. Martínez, Carlos Guestrin","doi":"10.1109/FCCM.2014.15","DOIUrl":null,"url":null,"abstract":"Vertex-centric graph computations are widely used in many machine learning and data mining applications that operate on graph data structures. This paper presents GraphGen, a vertex-centric framework that targets FPGA for hardware acceleration of graph computations. GraphGen accepts a vertex-centric graph specification and automatically compiles it onto an application-specific synthesized graph processor and memory system for the target FPGA platform. We report design case studies using GraphGen to implement stereo matching and handwriting recognition graph applications on Terasic DE4 and Xilinx ML605 FPGA boards. Results show up to 14.6× and 2.9× speedups over software on Intel Core i7 CPU for the two applications, respectively.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

Abstract

Vertex-centric graph computations are widely used in many machine learning and data mining applications that operate on graph data structures. This paper presents GraphGen, a vertex-centric framework that targets FPGA for hardware acceleration of graph computations. GraphGen accepts a vertex-centric graph specification and automatically compiles it onto an application-specific synthesized graph processor and memory system for the target FPGA platform. We report design case studies using GraphGen to implement stereo matching and handwriting recognition graph applications on Terasic DE4 and Xilinx ML605 FPGA boards. Results show up to 14.6× and 2.9× speedups over software on Intel Core i7 CPU for the two applications, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GraphGen:一个以顶点为中心的图形计算的FPGA框架
以顶点为中心的图计算被广泛应用于许多基于图数据结构的机器学习和数据挖掘应用中。本文介绍了GraphGen,一个以FPGA为目标的以顶点为中心的框架,用于图形计算的硬件加速。GraphGen接受以顶点为中心的图形规范,并自动将其编译到特定于应用程序的合成图形处理器和目标FPGA平台的内存系统中。我们报告了使用GraphGen在Terasic DE4和Xilinx ML605 FPGA板上实现立体匹配和手写识别图形应用的设计案例研究。结果显示,这两个应用程序的速度分别比英特尔酷睿i7 CPU上的软件提高了14.6倍和2.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Architectural Approach to Characterizing and Eliminating Sources of Inefficiency in a Soft Processor Design High-Throughput Fixed-Point Object Detection on FPGAs A Hierarchical Memory Architecture with NoC Support for MPSoC on FPGAs System-Level Retiming and Pipelining Harmonica: An FPGA-Based Data Parallel Soft Core
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1