Computer Perceptual Organization in Computer Vision

Sudeep Sarkar, K. Boyer
{"title":"Computer Perceptual Organization in Computer Vision","authors":"Sudeep Sarkar, K. Boyer","doi":"10.1142/2421","DOIUrl":null,"url":null,"abstract":"This book describes the design of a complete, flexible system for perceptual organization in computer vision using graph theoretic techniques, voting methods, and an extension of the Bayesian networks called perceptual inference networks (PINs). The PIN, which forms the heart of the algorithm, is based on Bayesian probabilistic networks and has potential for being used in other spatial information tasks. The book also has a comprehensive review of the prior work in the area. It not only classifies the prior work but also identifies some areas of future work.","PeriodicalId":440867,"journal":{"name":"Series in Machine Perception and Artificial Intelligence","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Series in Machine Perception and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/2421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

Abstract

This book describes the design of a complete, flexible system for perceptual organization in computer vision using graph theoretic techniques, voting methods, and an extension of the Bayesian networks called perceptual inference networks (PINs). The PIN, which forms the heart of the algorithm, is based on Bayesian probabilistic networks and has potential for being used in other spatial information tasks. The book also has a comprehensive review of the prior work in the area. It not only classifies the prior work but also identifies some areas of future work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机视觉中的计算机感知组织
这本书描述了一个完整的,灵活的系统的设计,用于感知组织的计算机视觉使用图论技术,投票方法,和贝叶斯网络的扩展称为感知推理网络(PINs)。PIN是该算法的核心,它基于贝叶斯概率网络,具有在其他空间信息任务中使用的潜力。这本书还对该领域以前的工作进行了全面的回顾。它不仅对以前的工作进行了分类,而且还确定了未来工作的一些领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet Theory Approach to Pattern Recognition DIVA-HisDB A Precisely Annotated Dataset of Challenging Medieval Manuscripts Conclusions and Future Trends FRONT MATTER BACK MATTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1