M. Moussu, E. Georget, R. Abdeddaim, S. Enoch, S. Glybovski
{"title":"Theoretical Study of a High Permittivity Dielectric Resonator as a Potential NMR Probe","authors":"M. Moussu, E. Georget, R. Abdeddaim, S. Enoch, S. Glybovski","doi":"10.23919/RADIO.2018.8572301","DOIUrl":null,"url":null,"abstract":"In this short paper, we present a theoretical study of a new probe for Nuclear Magnetic Resonance (NMR) microscopy, based on high-permittivity and low-loss ceramic resonators. The probe design consists of two coupled annular resonators, with a maximum of axial magnetic field within them. An analytical study of the first transverse electric (TE) eigenmode of a single resonator was undertaken to assess the reliability of the magnetic field distribution for NMR imaging purposes. The developed analytical model also enabled to study coupling between resonators as a tool for tuning the probe at the Larmor frequency.","PeriodicalId":365518,"journal":{"name":"2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/RADIO.2018.8572301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this short paper, we present a theoretical study of a new probe for Nuclear Magnetic Resonance (NMR) microscopy, based on high-permittivity and low-loss ceramic resonators. The probe design consists of two coupled annular resonators, with a maximum of axial magnetic field within them. An analytical study of the first transverse electric (TE) eigenmode of a single resonator was undertaken to assess the reliability of the magnetic field distribution for NMR imaging purposes. The developed analytical model also enabled to study coupling between resonators as a tool for tuning the probe at the Larmor frequency.