S. Hertelé, T. Galle, K. V. Minnebruggen, Wim De Waele, O. Huising
{"title":"Experimental-Numerical Assessment of Vintage Pipe and Girth Weld With a Geometrically Complex Corrosion Feature","authors":"S. Hertelé, T. Galle, K. V. Minnebruggen, Wim De Waele, O. Huising","doi":"10.1115/IPC2018-78408","DOIUrl":null,"url":null,"abstract":"Standard pipe corrosion assessments are based on simplifying assumptions with respect to corrosion geometry and focus on pressure based loading. Moreover, when corrosion patches traverse girth welds, validity criteria to their assessment become impractically vague. The integrity of girth welds is additionally influenced by axial stresses, which may act in combination with hoop stress resulting from pressure. In an attempt to address these issues, the authors conducted a detailed assessment on a significant, highly irregular corrosion patch traversing a 12″ natural gas pipeline girth weld. The investigation comprises a full scale uniaxial tensile test and supporting detailed finite element (FE) analyses. Hereby, the model mesh adopts detailed geometrical characteristics resulting from a surface profile scan obtained from stereoscopic digital image correlation. The numerical model is validated based on the uniaxial tensile test, in the sense that plastic collapse and highly complex strain distributions are successfully reproduced. Finally, the FE model is used to explore axial tensile failure in presence of internal pressure.","PeriodicalId":273758,"journal":{"name":"Volume 1: Pipeline and Facilities Integrity","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Pipeline and Facilities Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Standard pipe corrosion assessments are based on simplifying assumptions with respect to corrosion geometry and focus on pressure based loading. Moreover, when corrosion patches traverse girth welds, validity criteria to their assessment become impractically vague. The integrity of girth welds is additionally influenced by axial stresses, which may act in combination with hoop stress resulting from pressure. In an attempt to address these issues, the authors conducted a detailed assessment on a significant, highly irregular corrosion patch traversing a 12″ natural gas pipeline girth weld. The investigation comprises a full scale uniaxial tensile test and supporting detailed finite element (FE) analyses. Hereby, the model mesh adopts detailed geometrical characteristics resulting from a surface profile scan obtained from stereoscopic digital image correlation. The numerical model is validated based on the uniaxial tensile test, in the sense that plastic collapse and highly complex strain distributions are successfully reproduced. Finally, the FE model is used to explore axial tensile failure in presence of internal pressure.