Ibad Kureshi, G. Theodoropoulos, E. Mangina, G. O’hare, J. Roche
{"title":"Towards an Info-Symbiotic Decision Support System for Disaster Risk Management","authors":"Ibad Kureshi, G. Theodoropoulos, E. Mangina, G. O’hare, J. Roche","doi":"10.1109/DS-RT.2015.26","DOIUrl":null,"url":null,"abstract":"This paper outlines a framework for an info-symbiotic modelling system using cyber-physical sensors to assist in decision-making. Using a dynamic data-driven simulation approach, this system can help with the identification of target areas and resource allocation in emergency situations. Using different natural disasters as exemplars, we will show how cyber-physical sensors can enhance ground level intelligence and aid in the creation of dynamic models to capture the state of human casualties. Using a virtual command & control centre communicating with sensors in the field, up-to-date information of the ground realities can be incorporated in a dynamic feedback loop. Using other information (e.g. Weather models) a complex and rich model can be created. The framework adaptively manages the heterogeneous collection of data resources and uses agent-based models to create what-if scenarios in order to determine the best course of action.","PeriodicalId":207275,"journal":{"name":"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT.2015.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This paper outlines a framework for an info-symbiotic modelling system using cyber-physical sensors to assist in decision-making. Using a dynamic data-driven simulation approach, this system can help with the identification of target areas and resource allocation in emergency situations. Using different natural disasters as exemplars, we will show how cyber-physical sensors can enhance ground level intelligence and aid in the creation of dynamic models to capture the state of human casualties. Using a virtual command & control centre communicating with sensors in the field, up-to-date information of the ground realities can be incorporated in a dynamic feedback loop. Using other information (e.g. Weather models) a complex and rich model can be created. The framework adaptively manages the heterogeneous collection of data resources and uses agent-based models to create what-if scenarios in order to determine the best course of action.