Unknown Surface Modeling Method Based on High-precision CMM

Yueping Chen, Yinhua Lu
{"title":"Unknown Surface Modeling Method Based on High-precision CMM","authors":"Yueping Chen, Yinhua Lu","doi":"10.11648/J.IJMEA.20210901.11","DOIUrl":null,"url":null,"abstract":"Reverse engineering is typically applied to solve the CAD model of unknown parts. As modern industry requirements on the accuracy of complex surfaces increase, setting up the high-precision CAD modeling of unknown complex surface parts through reverse engineering becomes an interesting research topic. Here, we present a method that combines manual measurement and automatic measurement with a high-precision coordinate measuring machine (CMM) to measure unknown complex-surface to obtain CAD model. In this study, the unknown complex-surface was fixed on the CMM worktable, and cancelling the probe compensation function of PC-DMIS before measurement. Then, 490 measuring points were obtained by manually moving the probe with a diameter of 5mm to measure surface. The measured points generated the CAD model, the CAD model was offset a probe radius, and determined the rough contours of the surface. This CAD model was automatically measured in a CMM, and the function of the “automatic measurement model” was iterated to obtain a high-accuracy CAD model. Each measurement was arranged with 20×20 measuring points. The accuracy of the CAD model obtained by each iterative measurement would be improved, and finally a high-precision CAD model was obtained. After 7 iterations, the final accuracy of the unknown surface CAD model was as high as 0.004 mm as compared to that of the actual part.","PeriodicalId":398842,"journal":{"name":"International Journal of Mechanical Engineering and Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMEA.20210901.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reverse engineering is typically applied to solve the CAD model of unknown parts. As modern industry requirements on the accuracy of complex surfaces increase, setting up the high-precision CAD modeling of unknown complex surface parts through reverse engineering becomes an interesting research topic. Here, we present a method that combines manual measurement and automatic measurement with a high-precision coordinate measuring machine (CMM) to measure unknown complex-surface to obtain CAD model. In this study, the unknown complex-surface was fixed on the CMM worktable, and cancelling the probe compensation function of PC-DMIS before measurement. Then, 490 measuring points were obtained by manually moving the probe with a diameter of 5mm to measure surface. The measured points generated the CAD model, the CAD model was offset a probe radius, and determined the rough contours of the surface. This CAD model was automatically measured in a CMM, and the function of the “automatic measurement model” was iterated to obtain a high-accuracy CAD model. Each measurement was arranged with 20×20 measuring points. The accuracy of the CAD model obtained by each iterative measurement would be improved, and finally a high-precision CAD model was obtained. After 7 iterations, the final accuracy of the unknown surface CAD model was as high as 0.004 mm as compared to that of the actual part.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高精度三坐标测量机的未知曲面建模方法
逆向工程通常用于求解未知零件的CAD模型。随着现代工业对复杂曲面精度要求的提高,通过逆向工程建立未知复杂曲面零件的高精度CAD建模成为一个有趣的研究课题。本文提出了一种利用高精度三坐标测量机(CMM)进行人工测量和自动测量相结合的方法,对未知复杂曲面进行测量以获得CAD模型。本研究将未知复杂曲面固定在三坐标测量机工作台上,并在测量前取消PC-DMIS的探头补偿功能。然后通过手动移动直径为5mm的探头测量表面,得到490个测点。将测量点生成CAD模型,对CAD模型偏移一个测头半径,并确定表面的粗轮廓。该CAD模型在三坐标测量机上自动测量,并对“自动测量模型”功能进行迭代,得到高精度的CAD模型。每次测量均设置20×20测点。每次迭代测量得到的CAD模型精度都会得到提高,最终得到高精度的CAD模型。经过7次迭代,未知曲面CAD模型的最终精度与实际零件的精度相比高达0.004 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Outstanding Excellences of Interactive Energy Density Topology Change Method Research on the Improvement of Weldability in Resistance Spot Welding of 6-Series Aluminum Alloys Techno-Economic Analysis of the Usage of Solar Photovoltaic (SPV) System Compared to Premium Motor Spirit (PMS) for Power Generation in Nigeria Processing and Characterization of Maraging Steel Using LPBF Additive Manufacturing Technology The Effect of Bumper Dimensions and Car Speed on Neck and Lower Back Forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1