Bayesian nonparametric panel Markov-switching GARCH models

R. Casarin, Mauro Costantini, Anthony Osuntuyi
{"title":"Bayesian nonparametric panel Markov-switching GARCH models","authors":"R. Casarin, Mauro Costantini, Anthony Osuntuyi","doi":"10.1080/07350015.2023.2166049","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a new model for panel data with Markov-switching GARCH effects. The model incorporates a series-specific hidden Markov chain process that drives the GARCH parameters. To cope with the high-dimensionality of the parameter space, the paper exploits the cross-sectional clustering of the series by first assuming a soft parameter pooling through a hierarchical prior distribution with two-step procedure, and then introducing clustering effects in the parameter space through a nonparametric prior distribution. The model and the proposed inference are evaluated through a simulation experiment. The results suggest that the inference is able to recover the true value of the parameters and the number of groups in each regime. An empirical application to 78 assets of the SP&100 index from 6 January 2000 to 3 October 2020 is also carried out by using a two-regime Markov switching GARCH model. The findings shows the presence of 2 and 3 clusters among the constituents in the first and second regime, respectively.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07350015.2023.2166049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper introduces a new model for panel data with Markov-switching GARCH effects. The model incorporates a series-specific hidden Markov chain process that drives the GARCH parameters. To cope with the high-dimensionality of the parameter space, the paper exploits the cross-sectional clustering of the series by first assuming a soft parameter pooling through a hierarchical prior distribution with two-step procedure, and then introducing clustering effects in the parameter space through a nonparametric prior distribution. The model and the proposed inference are evaluated through a simulation experiment. The results suggest that the inference is able to recover the true value of the parameters and the number of groups in each regime. An empirical application to 78 assets of the SP&100 index from 6 January 2000 to 3 October 2020 is also carried out by using a two-regime Markov switching GARCH model. The findings shows the presence of 2 and 3 clusters among the constituents in the first and second regime, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯非参数面板马尔可夫切换GARCH模型
摘要本文介绍了一种新的马尔可夫切换GARCH效应面板数据模型。该模型结合了一个特定于系列的隐马尔可夫链过程,该过程驱动GARCH参数。为了应对参数空间的高维性,本文首先利用两步法通过分层先验分布假设软参数池化,然后通过非参数先验分布在参数空间中引入聚类效应,从而利用序列的截面聚类。通过仿真实验对模型和所提出的推理进行了验证。结果表明,该推理能够恢复参数的真实值和每个区域的群数。从2000年1月6日到2020年10月3日,对标准普尔100指数的78种资产进行了实证应用,并使用了一个双区马尔可夫切换GARCH模型。研究结果表明,在第一和第二体制的成分中分别存在2和3个簇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decomposition of Differences in Distribution under Sample Selection and the Gender Wage Gap Imputation of Counterfactual Outcomes when the Errors are Predicatable Simultaneous Confidence Intervals for Partially Identified Parameters Estimation of the Local Conditional Tail Average Treatment Effect* Forecasting Inflation Using Economic Narratives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1