G. Tsintskaladze, T. Sharashenidze, L. Eprikashvili, M. Zautashvili, T. Kordzakhia, M. Dzagania
{"title":"Study on the structure of phosphorus-containing zeolite anionic nanoporous materials","authors":"G. Tsintskaladze, T. Sharashenidze, L. Eprikashvili, M. Zautashvili, T. Kordzakhia, M. Dzagania","doi":"10.15407/hftp13.04.506","DOIUrl":null,"url":null,"abstract":"Phosphates are specific compounds of the composition of living organisms, that play a special role in plant and animal life. The skeleton of most living organisms consists mainly of calcium, sodium, magnesium and other phosphates. Because phosphorus plays an important role in supplying nutrients to the environment, it is central to all forms of life. Therefore, interest in this type of material is great, and the scope of application is enormous, from agriculture to medicine. On the basis of clinoptilolite, a natural zeolite located in Georgia, zeolitic nanomaterials containing phosphates were obtained by two different methods. The first method is the introduction of mono-, di-, and tri-substituted sodium phosphates into the zeolite structure under conditions of boiling on a sand bath, where the introduction of phosphate ions is difficult. In the second method, phosphate ions almost completely occupy the inner structural area of the zeolite. The zeolitic nanoporous materials of mono-substituted, di-substituted and tri-substituted phosphates obtained by these methods and subsequently studied by Fourier spectroscopic method. The obtained materials have preserved the zeolitic structure, although their IR spectra are sharply different from each other, which can be explained by different anions occupying different positions in the zeolitic structure. It should be noted that after washing the obtained material with water, phosphate ions are almost completely washed out of the zeolite structure. The importance of the received materials and the perspective of their use are given.","PeriodicalId":296392,"journal":{"name":"Himia, Fizika ta Tehnologia Poverhni","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Himia, Fizika ta Tehnologia Poverhni","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/hftp13.04.506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphates are specific compounds of the composition of living organisms, that play a special role in plant and animal life. The skeleton of most living organisms consists mainly of calcium, sodium, magnesium and other phosphates. Because phosphorus plays an important role in supplying nutrients to the environment, it is central to all forms of life. Therefore, interest in this type of material is great, and the scope of application is enormous, from agriculture to medicine. On the basis of clinoptilolite, a natural zeolite located in Georgia, zeolitic nanomaterials containing phosphates were obtained by two different methods. The first method is the introduction of mono-, di-, and tri-substituted sodium phosphates into the zeolite structure under conditions of boiling on a sand bath, where the introduction of phosphate ions is difficult. In the second method, phosphate ions almost completely occupy the inner structural area of the zeolite. The zeolitic nanoporous materials of mono-substituted, di-substituted and tri-substituted phosphates obtained by these methods and subsequently studied by Fourier spectroscopic method. The obtained materials have preserved the zeolitic structure, although their IR spectra are sharply different from each other, which can be explained by different anions occupying different positions in the zeolitic structure. It should be noted that after washing the obtained material with water, phosphate ions are almost completely washed out of the zeolite structure. The importance of the received materials and the perspective of their use are given.