A hybrid generative-discriminative model for abnormal event detection in surveillance video scenes

P. S. A. Kumar, D. Kavitha, S. A. Kumar
{"title":"A hybrid generative-discriminative model for abnormal event detection in surveillance video scenes","authors":"P. S. A. Kumar, D. Kavitha, S. A. Kumar","doi":"10.1504/ijics.2020.10026782","DOIUrl":null,"url":null,"abstract":"Detecting anomalous events in densely pedestrian traffic video scenes remains challenging task, due to object's tracking difficulties and noise in the scene. In this paper, a Novel Hybrid Generative-Discriminative framework is proposed for detecting and localising the anomalous events of illegal vehicles present in the scene. This paper introduces a novelty in the application of Hybrid usage of latent Dirichlet allocation (LDA) and support vector machines (SVMs) over dynamic texture at sub-region level. The proposed HLDA-SVM model consists mainly of three steps: first local binary patterns from twelve orthogonal planes (LBP-TwP) technique is applied in each spatio-temporal video patch to extract dynamic texture; then LDA technique is applied to the extracted dynamic textures for finding the latent topic distribution and finally, training is done on the distribution of topic vector for each video sequence using multi way SVM classifier. The proposed HLDA-SVM model is validated on UCSD dataset data set and is compared with mixture of dynamic texture and motion context technique. Experimental results show that the HLDA-SVM approach performs well in par with current algorithms for anomaly detection.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijics.2020.10026782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Detecting anomalous events in densely pedestrian traffic video scenes remains challenging task, due to object's tracking difficulties and noise in the scene. In this paper, a Novel Hybrid Generative-Discriminative framework is proposed for detecting and localising the anomalous events of illegal vehicles present in the scene. This paper introduces a novelty in the application of Hybrid usage of latent Dirichlet allocation (LDA) and support vector machines (SVMs) over dynamic texture at sub-region level. The proposed HLDA-SVM model consists mainly of three steps: first local binary patterns from twelve orthogonal planes (LBP-TwP) technique is applied in each spatio-temporal video patch to extract dynamic texture; then LDA technique is applied to the extracted dynamic textures for finding the latent topic distribution and finally, training is done on the distribution of topic vector for each video sequence using multi way SVM classifier. The proposed HLDA-SVM model is validated on UCSD dataset data set and is compared with mixture of dynamic texture and motion context technique. Experimental results show that the HLDA-SVM approach performs well in par with current algorithms for anomaly detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于监控视频场景异常事件检测的混合生成-判别模型
在行人密集的交通视频场景中,由于物体的跟踪困难和场景中的噪声,异常事件的检测仍然是一项具有挑战性的任务。本文提出了一种新的混合生成-判别框架,用于检测和定位场景中存在的非法车辆异常事件。本文介绍了一种将潜在狄利克雷分配(latent Dirichlet allocation, LDA)和支持向量机(support vector machines, svm)混合应用于子区域级动态纹理的新方法。本文提出的HLDA-SVM模型主要包括三个步骤:首先,在每个时空视频patch中应用12个正交平面的局部二值模式(LBP-TwP)技术提取动态纹理;然后对提取的动态纹理应用LDA技术寻找潜在主题分布,最后利用多路SVM分类器对每个视频序列的主题向量分布进行训练。在UCSD数据集上对HLDA-SVM模型进行了验证,并与动态纹理和运动上下文混合技术进行了比较。实验结果表明,HLDA-SVM方法与现有的异常检测算法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1