Forecasting about EURJPY exchange rate using hidden Markova model and CART classification algorithm

A. Haeri, S. M. Hatefi, K. Rezaie
{"title":"Forecasting about EURJPY exchange rate using hidden Markova model and CART classification algorithm","authors":"A. Haeri, S. M. Hatefi, K. Rezaie","doi":"10.14419/JACST.V4I1.4194","DOIUrl":null,"url":null,"abstract":"The goal of this paper is forecasting direction (increase or decrease) of EURJPY exchange rate in a day. For this purpose five major indicators are used. The indicators are exponential moving average (EMA), stochastic oscillator (KD), moving average convergence divergence (MACD), relative strength index (RSI) and Williams %R (WMS %R). Then a hybrid approach using hidden Markov models and CART classification algorithms is developed. Proposed approach is used for forecasting direcation (increase or decrease) of Euro-Yen exchange rates in a day. Also the approach is used for forecasting differnece between intial and maximum exchange rates in a day. As well as it is used for forecasting differnece between intial and minimum exchange rates in a day. Reslut of proposed method is compared with CART and neural network. Comparison shows that the forecasting with proposed method has higher accuracy.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"93 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V4I1.4194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The goal of this paper is forecasting direction (increase or decrease) of EURJPY exchange rate in a day. For this purpose five major indicators are used. The indicators are exponential moving average (EMA), stochastic oscillator (KD), moving average convergence divergence (MACD), relative strength index (RSI) and Williams %R (WMS %R). Then a hybrid approach using hidden Markov models and CART classification algorithms is developed. Proposed approach is used for forecasting direcation (increase or decrease) of Euro-Yen exchange rates in a day. Also the approach is used for forecasting differnece between intial and maximum exchange rates in a day. As well as it is used for forecasting differnece between intial and minimum exchange rates in a day. Reslut of proposed method is compared with CART and neural network. Comparison shows that the forecasting with proposed method has higher accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用隐马尔可娃模型和CART分类算法对欧元日元汇率进行预测
本文的目的是预测欧元日元汇率在一天内的走势(上升或下降)。为此目的,使用了五个主要指标。指标是指数移动平均线(EMA),随机振荡器(KD),移动平均收敛散度(MACD),相对强弱指数(RSI)和威廉姆斯%R (WMS %R)。然后提出了一种基于隐马尔可夫模型和CART分类算法的混合分类方法。提出的方法用于预测欧元日元汇率在一天内的方向(增加或减少)。该方法还可用于预测一天内初始汇率和最高汇率之间的差异。它还用于预测一天内初始汇率和最低汇率之间的差异。将该方法与CART和神经网络进行了比较。对比表明,该方法具有较高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating the performance of machine learning algorithms for network intrusion detection systems in the internet of things infrastructure Geometric Approach to Optimal Path Problem with Uncertain Arc Lengths Statistical adjustment of the parameters of multi-objective optimization problems with design expert method Circular Gabor wavelet algorithm for fingerprint liveness detection Numerical analysis of transcritical carbon dioxide compression cycle: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1