Rich representation and ranking for photographic image retrieval in ImageCLEF 2007

Sheng Gao, J. Chevallet, Joo-Hwee Lim
{"title":"Rich representation and ranking for photographic image retrieval in ImageCLEF 2007","authors":"Sheng Gao, J. Chevallet, Joo-Hwee Lim","doi":"10.1109/MMSP.2008.4665139","DOIUrl":null,"url":null,"abstract":"The task of ad hoc photographic image retrieval in ImageCLEF 2007 international benchmark is to retrieve relevant images in the database to the user query formulated as keywords and image examples. This paper presents rich representation and indexing technologies exploited in our system that participated in ImageCLEF 2007. It uses diverse visual content representation, text representation, pseudo-relevance feedback and fusion, which make our system, with mean average precision 0.2833, in the 4th place among 457 automatic runs submitted from 20 participants to photographic ImageCLEF 2007 and in the 2nd place in terms of participants. Our systematic analysis in the paper demonstrates that 1) combing diverse low-level visual features and ranking technologies significantly improves the content-based image retrieval (CBIR) system; 2) cross-modality pseudo-relevance feedback improves the system performance; and 3) fusion of CBIR and TBIR outperforms individual modality based system.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The task of ad hoc photographic image retrieval in ImageCLEF 2007 international benchmark is to retrieve relevant images in the database to the user query formulated as keywords and image examples. This paper presents rich representation and indexing technologies exploited in our system that participated in ImageCLEF 2007. It uses diverse visual content representation, text representation, pseudo-relevance feedback and fusion, which make our system, with mean average precision 0.2833, in the 4th place among 457 automatic runs submitted from 20 participants to photographic ImageCLEF 2007 and in the 2nd place in terms of participants. Our systematic analysis in the paper demonstrates that 1) combing diverse low-level visual features and ranking technologies significantly improves the content-based image retrieval (CBIR) system; 2) cross-modality pseudo-relevance feedback improves the system performance; and 3) fusion of CBIR and TBIR outperforms individual modality based system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ImageCLEF 2007中图像检索的丰富表示和排序
ImageCLEF 2007国际基准中的临时摄影图像检索任务是将数据库中的相关图像检索到以关键字和图像示例形式表述的用户查询中。本文介绍了参与ImageCLEF 2007的系统所采用的丰富的表示和索引技术。它使用了多种视觉内容表示、文本表示、伪相关反馈和融合,使我们的系统以0.2833的平均精度在20名参与者提交给2007年摄影ImageCLEF的457次自动运行中排名第4,在参与者方面排名第2。本文的系统分析表明:1)结合多种低层次视觉特征和排序技术显著改善了基于内容的图像检索(CBIR)系统;2)跨模态伪相关反馈提高了系统性能;3) CBIR和tir的融合优于基于个体模态的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting doubly compressed JPEG images by using Mode Based First Digit Features Music tracking in audio streams from movies 3-D mesh representation and retrieval using Isomap manifold Adaptive wavelet coding of the depth map for stereoscopic view synthesis Fast encoding algorithms for video coding with adaptive interpolation filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1