Sensitivity analysis of Markov regenerative stochastic Petri nets

V. Mainkar, Hoon Choi, Kishor S. Trivedi
{"title":"Sensitivity analysis of Markov regenerative stochastic Petri nets","authors":"V. Mainkar, Hoon Choi, Kishor S. Trivedi","doi":"10.1109/PNPM.1993.393452","DOIUrl":null,"url":null,"abstract":"Sensitivity analysis, i.e., the analysis of the effect of small variations in system parameters on the output measures, can be studied by computing the derivatives of the output measures with respect to the parameter. An algorithm for parametric sensitivity analysis of Markov regenerative stochastic Petri nets (MRSPN) is presented. MRSPNs are a true generalization of stochastic Petri nets, in that they allow for transitions to have generally distributed firing times (under certain conditions). The expressions for the steady state probabilities of MRSPNs were developed by H. Choi et al. (1993). The authors extend the steady state analysis and present equations for sensitivity of the steady state probabilities with respect to an arbitrary system parameter. Sensitivity functions of the performance measures can accordingly be expressed in terms of the sensitivity functions of the steady state probabilities. The authors present an application of our algorithm by finding an optimizing parameter for a vacation queue.<<ETX>>","PeriodicalId":404832,"journal":{"name":"Proceedings of 5th International Workshop on Petri Nets and Performance Models","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 5th International Workshop on Petri Nets and Performance Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PNPM.1993.393452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Sensitivity analysis, i.e., the analysis of the effect of small variations in system parameters on the output measures, can be studied by computing the derivatives of the output measures with respect to the parameter. An algorithm for parametric sensitivity analysis of Markov regenerative stochastic Petri nets (MRSPN) is presented. MRSPNs are a true generalization of stochastic Petri nets, in that they allow for transitions to have generally distributed firing times (under certain conditions). The expressions for the steady state probabilities of MRSPNs were developed by H. Choi et al. (1993). The authors extend the steady state analysis and present equations for sensitivity of the steady state probabilities with respect to an arbitrary system parameter. Sensitivity functions of the performance measures can accordingly be expressed in terms of the sensitivity functions of the steady state probabilities. The authors present an application of our algorithm by finding an optimizing parameter for a vacation queue.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马尔可夫再生随机Petri网的灵敏度分析
灵敏度分析,即分析系统参数的微小变化对输出测度的影响,可以通过计算输出测度对参数的导数来研究。提出了一种马尔可夫再生随机Petri网(MRSPN)的参数敏感性分析算法。mrspn是随机Petri网的真正推广,因为它们允许转换具有普遍分布的触发时间(在某些条件下)。mrspn稳态概率的表达式由H. Choi等人(1993)提出。作者推广了稳态分析,给出了稳态概率对任意系统参数的灵敏度方程。性能测度的灵敏度函数可以用稳态概率的灵敏度函数来表示。作者通过寻找休假队列的优化参数,给出了该算法的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of deterministic and stochastic Petri nets Conflict sets in colored Petri nets Decidability of the strict reachability problem for TPN's with rational and real durations Quantitative evaluation of discrete event systems: Models, performances and techniques A characterization of independence for competing Markov chains with applications to stochastic Petri nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1