Mesoscopic traffic simulation on CPU/GPU

Yan Xu, Gary S. H. Tan, Xiaosong Li, Xiao Song
{"title":"Mesoscopic traffic simulation on CPU/GPU","authors":"Yan Xu, Gary S. H. Tan, Xiaosong Li, Xiao Song","doi":"10.1145/2601381.2601396","DOIUrl":null,"url":null,"abstract":"Mesoscopic traffic simulation is an important branch of technology to support offline large-scale simulation-based traffic planning and online simulation-based traffic management. One of the major concerns using mesoscopic traffic simulations is the performance, which means the required time to simulate a traffic scenario. At the same time, the GPU has recently been a success, because of its massive performance compared to the CPU. Thus, a critical question is \"whether the GPU can be a potential high-performance platform for mesoscopic traffic simulations\"? To the best of our knowledge, there is no clear answer in the research area. In this paper, we firstly propose a comprehensive framework to run a traditional time-stepped mesoscopic traffic simulation on CPU/GPU. Then, we design a boundary processing method to guarantee the correctness of running mesoscopic supply traffic simulations on the GPU. Thirdly, the proposed mesoscopic traffic simulation framework is demonstrated to simulate 100,000 vehicles moving on a large-scale grid road network. In this case study, running a mesoscopic supply traffic simulation on a GPU (GeForce GT 650M) gives 11.2 times speedup, compared with running the same supply simulation on a CPU core (Intel E5-2620). In the end, this paper explains the theoretical limitation of running mesoscopic supply traffic simulations on the GPU. In conclusion, regardless of high system complexity, the proposed mesoscopic traffic simulation framework on CPU/GPU provides an innovative and promising solution for high-performance mesoscopic traffic simulations.","PeriodicalId":255272,"journal":{"name":"SIGSIM Principles of Advanced Discrete Simulation","volume":"57 Pt 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSIM Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2601381.2601396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Mesoscopic traffic simulation is an important branch of technology to support offline large-scale simulation-based traffic planning and online simulation-based traffic management. One of the major concerns using mesoscopic traffic simulations is the performance, which means the required time to simulate a traffic scenario. At the same time, the GPU has recently been a success, because of its massive performance compared to the CPU. Thus, a critical question is "whether the GPU can be a potential high-performance platform for mesoscopic traffic simulations"? To the best of our knowledge, there is no clear answer in the research area. In this paper, we firstly propose a comprehensive framework to run a traditional time-stepped mesoscopic traffic simulation on CPU/GPU. Then, we design a boundary processing method to guarantee the correctness of running mesoscopic supply traffic simulations on the GPU. Thirdly, the proposed mesoscopic traffic simulation framework is demonstrated to simulate 100,000 vehicles moving on a large-scale grid road network. In this case study, running a mesoscopic supply traffic simulation on a GPU (GeForce GT 650M) gives 11.2 times speedup, compared with running the same supply simulation on a CPU core (Intel E5-2620). In the end, this paper explains the theoretical limitation of running mesoscopic supply traffic simulations on the GPU. In conclusion, regardless of high system complexity, the proposed mesoscopic traffic simulation framework on CPU/GPU provides an innovative and promising solution for high-performance mesoscopic traffic simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CPU/GPU的介观交通模拟
介观交通仿真是支持基于离线大规模仿真的交通规划和基于在线仿真的交通管理的重要技术分支。使用介观交通模拟的主要问题之一是性能,这意味着模拟交通场景所需的时间。与此同时,GPU最近取得了成功,因为它的性能比CPU要好得多。因此,一个关键的问题是“GPU是否可以成为一个潜在的中观交通模拟的高性能平台”?据我们所知,在这个研究领域没有明确的答案。在本文中,我们首先提出了一个在CPU/GPU上运行传统时间步介观交通仿真的综合框架。然后,我们设计了一种边界处理方法,以保证在GPU上运行介观供给交通仿真的正确性。第三,对所提出的细观交通模拟框架进行了验证,以模拟10万辆汽车在大规模网格道路网络上的移动。在本案例研究中,与在CPU核心(Intel E5-2620)上运行相同的供应模拟相比,在GPU (GeForce GT 650M)上运行介观供应流量模拟可以获得11.2倍的加速。最后,本文解释了在GPU上运行介观供给流量模拟的理论局限性。综上所述,尽管系统复杂度较高,但基于CPU/GPU的介观交通仿真框架为高性能介观交通仿真提供了一种创新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hierarchical resource management for enhancing performance of large-scale simulations on data centers Transparent multi-core speculative parallelization of DES models with event and cross-state dependencies The earth system modeling framework: interoperability infrastructure for high performance weather and climate models Modeling and simulation of data center networks Synchronisation for dynamic load balancing of decentralised conservative distributed simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1