The WoNoWa Dataset: Investigating the Transactive Memory System in Small Group Interactions

Béatrice Biancardi, Lou Maisonnave-Couterou, Pierrick Renault, Brian Ravenet, M. Mancini, G. Varni
{"title":"The WoNoWa Dataset: Investigating the Transactive Memory System in Small Group Interactions","authors":"Béatrice Biancardi, Lou Maisonnave-Couterou, Pierrick Renault, Brian Ravenet, M. Mancini, G. Varni","doi":"10.1145/3382507.3418843","DOIUrl":null,"url":null,"abstract":"We present WoNoWa, a novel multi-modal dataset of small group interactions in collaborative tasks. The dataset is explicitly designed to elicit and to study over time a Transactive Memory System (TMS), a group's emergent state characterizing the group's meta-knowledge about \"who knows what\". A rich set of automatic features and manual annotations, extracted from the collected audio-visual data, is available on request for research purposes. Features include individual descriptors (e.g., position, Quantity of Motion, speech activity) and group descriptors (e.g., F-formations). Additionally, participants' self-assessments are available. Preliminary results from exploratory analyses show that the WoNoWa design allowed groups to develop a TMS that increased across the tasks. These results encourage the use of the WoNoWa dataset for a better understanding of the relationship between behavioural patterns and TMS, that in turn could help to improve group performance.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present WoNoWa, a novel multi-modal dataset of small group interactions in collaborative tasks. The dataset is explicitly designed to elicit and to study over time a Transactive Memory System (TMS), a group's emergent state characterizing the group's meta-knowledge about "who knows what". A rich set of automatic features and manual annotations, extracted from the collected audio-visual data, is available on request for research purposes. Features include individual descriptors (e.g., position, Quantity of Motion, speech activity) and group descriptors (e.g., F-formations). Additionally, participants' self-assessments are available. Preliminary results from exploratory analyses show that the WoNoWa design allowed groups to develop a TMS that increased across the tasks. These results encourage the use of the WoNoWa dataset for a better understanding of the relationship between behavioural patterns and TMS, that in turn could help to improve group performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WoNoWa数据集:研究小组互动中的交互记忆系统
我们提出了WoNoWa,一个新的多模态数据集,用于协作任务中的小组交互。该数据集被明确设计为引出并随着时间的推移研究一个交互记忆系统(TMS),这是一个群体的突发状态,表征了这个群体关于“谁知道什么”的元知识。从收集的视听数据中提取的一套丰富的自动特征和手动注释可根据研究目的的要求提供。特征包括个体描述符(例如,位置,运动数量,言语活动)和群体描述符(例如,f形)。此外,参与者的自我评估是可用的。探索性分析的初步结果表明,WoNoWa设计允许小组开发在任务中增加的TMS。这些结果鼓励使用WoNoWa数据集来更好地理解行为模式和经颅磁刺激之间的关系,从而有助于提高群体表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OpenSense: A Platform for Multimodal Data Acquisition and Behavior Perception Human-centered Multimodal Machine Intelligence Touch Recognition with Attentive End-to-End Model MORSE: MultimOdal sentiment analysis for Real-life SEttings Temporal Attention and Consistency Measuring for Video Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1