N-SA K-anonymity Model: A Model Exclusive of Tuple Suppression Technique

N. Maheshwarkar, K. Pathak, V. Chourey
{"title":"N-SA K-anonymity Model: A Model Exclusive of Tuple Suppression Technique","authors":"N. Maheshwarkar, K. Pathak, V. Chourey","doi":"10.1109/GCIS.2012.77","DOIUrl":null,"url":null,"abstract":"N-SA K-anonymity Model: A Model Exclusive of Tuple Suppression Technique is used to protect released data which contains multiple sensitive attributes. On the basis of K-anonymity model sensitive information cannot be distinguished from at least K-1 individuals whose information also appears in the release. N-SA K-anonymity model proposed to maintain the confidentiality of respondents. Tuple suppression causes data loss as well as disturbs the accuracy of sensitive information. Tuple suppression is applied on record when particular record not satisfying K factor. If multiple dissimilar records present in dataset increases the percentage of data distortion. N-SA K-anonymity model suggest adding extra records from population to satisfy not only K-anonymity also increase data availability as well as help to maintain the accuracy of multiple sensitive information. Records are added in such a way, they will not disturb accuracy of multiple sensitive information.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

N-SA K-anonymity Model: A Model Exclusive of Tuple Suppression Technique is used to protect released data which contains multiple sensitive attributes. On the basis of K-anonymity model sensitive information cannot be distinguished from at least K-1 individuals whose information also appears in the release. N-SA K-anonymity model proposed to maintain the confidentiality of respondents. Tuple suppression causes data loss as well as disturbs the accuracy of sensitive information. Tuple suppression is applied on record when particular record not satisfying K factor. If multiple dissimilar records present in dataset increases the percentage of data distortion. N-SA K-anonymity model suggest adding extra records from population to satisfy not only K-anonymity also increase data availability as well as help to maintain the accuracy of multiple sensitive information. Records are added in such a way, they will not disturb accuracy of multiple sensitive information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N-SA - k匿名模型:排除元组抑制技术的模型
N-SA k -匿名模型:一种排除元组抑制技术的模型,用于保护包含多个敏感属性的发布数据。根据k -匿名模型,敏感信息不能与至少K-1个个体区分,这些个体的信息也出现在发布中。提出N-SA - k匿名模型,以保持被调查者的机密性。元组抑制不仅会导致数据丢失,还会影响敏感信息的准确性。当特定记录不满足K因子时,对记录应用元组抑制。如果数据集中存在多个不同的记录,则会增加数据失真的百分比。N-SA k -匿名模型建议从人口中增加额外的记录,不仅满足k -匿名性,还可以提高数据的可用性,并有助于保持多个敏感信息的准确性。以这种方式添加记录,不会干扰多个敏感信息的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Different Meteorological Series The Design and Application for a Bio-inspired Nonlinear Intelligent Controller Problem-Specific Knowledge Based Heuristic Algorithm to Solve Satellite Broadcast Scheduling Problem Micro Pitch and Vary Speed for Extreme Value Search MPPT Method of DFIG Academic Relation Classification Rules Extraction with Correlation Feature Weight Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1