Sparse Random Linear Network Coding For Low Latency Allcast

M. Graham, A. Ganesh, R. Piechocki
{"title":"Sparse Random Linear Network Coding For Low Latency Allcast","authors":"M. Graham, A. Ganesh, R. Piechocki","doi":"10.1109/ALLERTON.2019.8919833","DOIUrl":null,"url":null,"abstract":"Numerous applications require the sharing of data from each node on a network with every other node. In the case of Connected and Autonomous Vehicles (CAVs), it will be necessary for vehicles to update each other with their positions, manoeuvring intentions, and other telemetry data, despite shadowing caused by other vehicles. These applications require scalable, reliable, low latency communications, over challenging broadcast channels. In this article, we consider the allcast problem, of achieving multiple simultaneous network broadcasts, over a broadcast medium. We model slow fading using random graphs, and show that an allcast method based on sparse random linear network coding can achieve reliable allcast in a constant number of transmission rounds. We compare this with an uncoded baseline, which we show requires O(log(n)) transmission rounds. We justify and compare our analysis with extensive simulations.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Numerous applications require the sharing of data from each node on a network with every other node. In the case of Connected and Autonomous Vehicles (CAVs), it will be necessary for vehicles to update each other with their positions, manoeuvring intentions, and other telemetry data, despite shadowing caused by other vehicles. These applications require scalable, reliable, low latency communications, over challenging broadcast channels. In this article, we consider the allcast problem, of achieving multiple simultaneous network broadcasts, over a broadcast medium. We model slow fading using random graphs, and show that an allcast method based on sparse random linear network coding can achieve reliable allcast in a constant number of transmission rounds. We compare this with an uncoded baseline, which we show requires O(log(n)) transmission rounds. We justify and compare our analysis with extensive simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低延迟全播稀疏随机线性网络编码
许多应用程序需要从网络上的每个节点与其他节点共享数据。在联网和自动驾驶汽车(cav)的情况下,车辆有必要相互更新自己的位置、操纵意图和其他遥测数据,尽管其他车辆会造成阴影。这些应用程序需要可扩展的、可靠的、低延迟的通信,通过具有挑战性的广播信道。在本文中,我们考虑在广播媒体上实现多个同时网络广播的全播问题。利用随机图对慢衰落进行建模,证明了一种基于稀疏随机线性网络编码的全播方法可以在恒定的传输轮数内实现可靠的全播。我们将其与未编码的基线进行比较,我们显示它需要O(log(n))个传输回合。我们用大量的模拟来证明和比较我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading Channels Scheduling Policies for Minimizing Job Migration and Server Running Costs for Cloud Computing Platforms Explicit Low-complexity Codes for Multiple Access Channel Resolvability Byzantine Fault-Tolerant Parallelized Stochastic Gradient Descent for Linear Regression Deep Reinforcement Learning Based Power Control for Wireless Multicast Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1