{"title":"Fast Compressive Large-Scale Matrix-Matrix Multiplication Using Product Codes","authors":"Orhan Ocal, K. Ramchandran","doi":"10.1109/ISIT44484.2020.9173951","DOIUrl":null,"url":null,"abstract":"Matrix-matrix multiplication and its derivatives are fundamental linear-algebraic primitives at the core of many modern optimization and machine learning algorithms. We design a new and novel framework for speeding up large-scale matrix-matrix multiplication when the output matrix is known to be sparse, as is true in many applications of interest. Our solution is based on a novel use of product codes which have been studied in the communications literature. In particular, when multiplying two matrices of sizes n × d and d n where the output matrix is (exactly) K-sparse with support× uniformly distributed, our algorithm requires max(O(dK), O(dn)) computations. We also extend our framework to handle the approximately-sparse setting where the output matrix has K-entries that are significantly larger than the rest. In this case, the computational complexity is max(O(dK log2(n)), O(dn log2(n))). We corroborate our findings with numerical simulations that validate our claims.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9173951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Matrix-matrix multiplication and its derivatives are fundamental linear-algebraic primitives at the core of many modern optimization and machine learning algorithms. We design a new and novel framework for speeding up large-scale matrix-matrix multiplication when the output matrix is known to be sparse, as is true in many applications of interest. Our solution is based on a novel use of product codes which have been studied in the communications literature. In particular, when multiplying two matrices of sizes n × d and d n where the output matrix is (exactly) K-sparse with support× uniformly distributed, our algorithm requires max(O(dK), O(dn)) computations. We also extend our framework to handle the approximately-sparse setting where the output matrix has K-entries that are significantly larger than the rest. In this case, the computational complexity is max(O(dK log2(n)), O(dn log2(n))). We corroborate our findings with numerical simulations that validate our claims.