Script identification from camera based Tri-Lingual document

Gururaj Mukarambi, Satishkumar Mallapa, B. V. Dhandra
{"title":"Script identification from camera based Tri-Lingual document","authors":"Gururaj Mukarambi, Satishkumar Mallapa, B. V. Dhandra","doi":"10.1109/SSPS.2017.8071593","DOIUrl":null,"url":null,"abstract":"In this paper, an algorithm is proposed for Trilingual Script Identification System in block wise for camera captured images. The Local Binary Pattern (LBP) features are used for Kannada, Hindi and English images for testing the performance of a proposed algorithm, a dataset of 6000 neat block images are considered. For each script a total of 2000 images are used for the proposed method. The segmentation technique is used to segment the document image in blocks. Block of sizes 128×128, 256×256, 512×512 and 1024×1024 for Kannada, Hindi and English have been considered. The LBP features are extracted in 8 neighbors, there by generating 59 features and submitted to KNN and SVM classifiers to classify the underlying image. The identification accuracy for KNN and SVM classifiers are respectively 96.60% and 98.00% for block size 128×128, 98.71% and 98.07% for block size 256×256, 99.70% and 98.00% for block size 512×512 and further 94.90% and 99.01% for block size 1024×1024 respectively. The optimal accuracy is 99.01% for SVM classifier for block size 1024×1024. The proposed method is independent of thinning.","PeriodicalId":382353,"journal":{"name":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPS.2017.8071593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an algorithm is proposed for Trilingual Script Identification System in block wise for camera captured images. The Local Binary Pattern (LBP) features are used for Kannada, Hindi and English images for testing the performance of a proposed algorithm, a dataset of 6000 neat block images are considered. For each script a total of 2000 images are used for the proposed method. The segmentation technique is used to segment the document image in blocks. Block of sizes 128×128, 256×256, 512×512 and 1024×1024 for Kannada, Hindi and English have been considered. The LBP features are extracted in 8 neighbors, there by generating 59 features and submitted to KNN and SVM classifiers to classify the underlying image. The identification accuracy for KNN and SVM classifiers are respectively 96.60% and 98.00% for block size 128×128, 98.71% and 98.07% for block size 256×256, 99.70% and 98.00% for block size 512×512 and further 94.90% and 99.01% for block size 1024×1024 respectively. The optimal accuracy is 99.01% for SVM classifier for block size 1024×1024. The proposed method is independent of thinning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相机的三语文档的脚本识别
本文提出了一种面向摄像机采集图像的分块三语文字识别系统算法。局部二值模式(LBP)特征用于卡纳达语、印地语和英语图像来测试所提出算法的性能,考虑了6000个整齐块图像的数据集。对于每个脚本,总共使用了2000张图像用于所提出的方法。分割技术用于将文档图像分割成块。卡纳达语、印地语和英语的块码分别为128×128、256×256、512×512和1024×1024。在8个邻域中提取LBP特征,在那里生成59个特征,提交给KNN和SVM分类器对底层图像进行分类。对于块大小128×128, KNN和SVM分类器的识别准确率分别为96.60%和98.00%;对于块大小256×256, KNN和SVM分类器的识别准确率分别为98.71%和98.07%;对于块大小512×512, KNN和SVM分类器的识别准确率分别为99.70%和98.00%;对于块大小1024×1024, KNN和SVM分类器的识别准确率分别为94.90%和99.01%。对于块大小,SVM分类器的最优准确率为99.01% 1024×1024。所提出的方法是独立于细化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart industry pollution monitoring and controlling using LabVIEW based IoT Compact circular ring shaped monopole UWB MIMO antenna Performance analysis of supervised machine learning techniques for sentiment analysis Vehicle network security testing Energy efficient routing in mobile Ad-hoc network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1