Evaluating Human-Artificial Agent Decision Congruence in a Coordinated Action Task

Gaurav Patil, Phillip Bagala, Patrick Nalepka, Rachel W. Kallen, Michael J. Richardson
{"title":"Evaluating Human-Artificial Agent Decision Congruence in a Coordinated Action Task","authors":"Gaurav Patil, Phillip Bagala, Patrick Nalepka, Rachel W. Kallen, Michael J. Richardson","doi":"10.1145/3527188.3563923","DOIUrl":null,"url":null,"abstract":"Recommender systems designed to augment human decision-making in multi-agent tasks need to not only recommend actions that align with the task goal, but which also maintain coordinative behaviors between agents. Further, if these systems are to be used for skill training, they need to impart implicit learning to its users. This work compared a recommender system trained using deep reinforcement learning to a heuristic-based system in recommending actions to human participants teaming with an artificial agent during a collaborative problem-solving task. In addition to evaluating task performance and learning, we also evaluate the extent to which the human action are congruent with the recommended actions.","PeriodicalId":179256,"journal":{"name":"Proceedings of the 10th International Conference on Human-Agent Interaction","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Human-Agent Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3527188.3563923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommender systems designed to augment human decision-making in multi-agent tasks need to not only recommend actions that align with the task goal, but which also maintain coordinative behaviors between agents. Further, if these systems are to be used for skill training, they need to impart implicit learning to its users. This work compared a recommender system trained using deep reinforcement learning to a heuristic-based system in recommending actions to human participants teaming with an artificial agent during a collaborative problem-solving task. In addition to evaluating task performance and learning, we also evaluate the extent to which the human action are congruent with the recommended actions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协调行动任务中人-人工智能体决策一致性评价
推荐系统旨在增强人类在多智能体任务中的决策能力,不仅需要推荐与任务目标一致的行动,还需要保持智能体之间的协调行为。此外,如果这些系统要用于技能培训,它们需要向用户传授内隐学习。这项工作比较了一个使用深度强化学习训练的推荐系统和一个基于启发式的系统,在协作解决问题的任务中,向与人工代理合作的人类参与者推荐行动。除了评估任务表现和学习,我们还评估人类行为与推荐行为一致的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hype Dlive: XR Live Performance System for Improving Passenger Comfort in Autonomous Driving Talk, Listen and Keep Me Company: A Mixed Methods Analysis of Children’s Perspectives Towards Robot Reading Companions A User-Centered Evaluation of the Data-Driven Sign Language Avatar System: A Pilot Study A Computer Game-based Tangible Upper Limb Rehabilitation Device Let’s Compete! The Influence of Human-Agent Competition and Collaboration on Agent Learning and Human Perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1