Computational prediction of toxicity

Meenakshi Mishra, Hongliang Fei, Jun Huan
{"title":"Computational prediction of toxicity","authors":"Meenakshi Mishra, Hongliang Fei, Jun Huan","doi":"10.1109/BIBM.2010.5706653","DOIUrl":null,"url":null,"abstract":"As the number of new chemicals developed and being used keep adding every year, having the toxic profiles of each chemical becomes a daunting challenge. To meet this information gap, EPA suggested that certain in vitro assays and computational methods, which predict toxicity related information in much lesser time and cost than traditional in vivo methods, may be used. In this paper, we use computational techniques to use results from certain in vitro assays applied on 309 chemicals (whose toxicity profile is readily available) along with the molecular descriptors and other computed physical-chemical properties of the chemicals to predict the toxicity caused by chemical at a particular endpoint. The dataset is available from EPA TOXCAST group online. We show that Random Forest and Naïve Bayes have a good performance on this dataset. We also show that using small and related trees in random forest help to further improve the performance.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

As the number of new chemicals developed and being used keep adding every year, having the toxic profiles of each chemical becomes a daunting challenge. To meet this information gap, EPA suggested that certain in vitro assays and computational methods, which predict toxicity related information in much lesser time and cost than traditional in vivo methods, may be used. In this paper, we use computational techniques to use results from certain in vitro assays applied on 309 chemicals (whose toxicity profile is readily available) along with the molecular descriptors and other computed physical-chemical properties of the chemicals to predict the toxicity caused by chemical at a particular endpoint. The dataset is available from EPA TOXCAST group online. We show that Random Forest and Naïve Bayes have a good performance on this dataset. We also show that using small and related trees in random forest help to further improve the performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毒性的计算预测
随着每年开发和使用的新化学品数量不断增加,了解每种化学品的毒性概况成为一项艰巨的挑战。为了弥补这一信息缺口,EPA建议可以使用某些体外测定和计算方法,这些方法比传统的体内方法在更短的时间和成本下预测毒性相关信息。在本文中,我们使用计算技术来使用309种化学物质(其毒性谱很容易获得)的某些体外测定结果,以及化学物质的分子描述符和其他计算的物理化学性质,以预测化学物质在特定端点引起的毒性。该数据集可从EPA TOXCAST组在线获得。我们证明随机森林和Naïve贝叶斯在这个数据集上有很好的性能。我们还表明,在随机森林中使用小的和相关的树有助于进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1