Exploiting RES for Hydrogen mobility: a new scenario for the company's fleet management

M. A. Bucarelli, F. Carere, T. Bragatto, F. Santori
{"title":"Exploiting RES for Hydrogen mobility: a new scenario for the company's fleet management","authors":"M. A. Bucarelli, F. Carere, T. Bragatto, F. Santori","doi":"10.1109/IREC52758.2021.9624830","DOIUrl":null,"url":null,"abstract":"Hydrogen aroused a great interest in the last decades as a promising energy vector for the energy transition as well as renewable energy storage. This article investigates the technical feasibility of a hydrogen-powered fleet, in the context of a microgrid with renewable generation. The hydrogen demand is satisfied through the electrolyser powered by local RES and periodical external refueling of a local hydrogen storage system. The model of the microgrid is implemented in the open-source GNU Octave environment and is exploited to size the local storage capacity. Different types of vehicles were considered and hydrogen pressure levels were distinguished among the system components. The model was applied to the waste collection fleet and the headquarters of ASM S.p.A., a utility located in the center of Italy, chosen as a case study. The dataset of 143 vehicles was used to model the hydrogen-powered fleet. Three scenarios were evaluated: hydrogen production using i) Reverse Power Flow, ii) PV production and iii) electricity drown from the grid. The storage capacity depends on the scenarios and in the case study it ranges from about 35 to 47 m3, in comparison with 13.6 m3 of current diesel refueling system, assuming the same frequency of external refueling.","PeriodicalId":266552,"journal":{"name":"2021 12th International Renewable Energy Congress (IREC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Renewable Energy Congress (IREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IREC52758.2021.9624830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Hydrogen aroused a great interest in the last decades as a promising energy vector for the energy transition as well as renewable energy storage. This article investigates the technical feasibility of a hydrogen-powered fleet, in the context of a microgrid with renewable generation. The hydrogen demand is satisfied through the electrolyser powered by local RES and periodical external refueling of a local hydrogen storage system. The model of the microgrid is implemented in the open-source GNU Octave environment and is exploited to size the local storage capacity. Different types of vehicles were considered and hydrogen pressure levels were distinguished among the system components. The model was applied to the waste collection fleet and the headquarters of ASM S.p.A., a utility located in the center of Italy, chosen as a case study. The dataset of 143 vehicles was used to model the hydrogen-powered fleet. Three scenarios were evaluated: hydrogen production using i) Reverse Power Flow, ii) PV production and iii) electricity drown from the grid. The storage capacity depends on the scenarios and in the case study it ranges from about 35 to 47 m3, in comparison with 13.6 m3 of current diesel refueling system, assuming the same frequency of external refueling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可再生能源实现氢动力:该公司车队管理的新方案
在过去的几十年里,氢作为能源转型和可再生能源储存的有前途的能源载体引起了人们的极大兴趣。本文研究了在可再生能源发电的微电网背景下,氢动力车队的技术可行性。通过局部可再生能源供电的电解槽和局部储氢系统的定期外部加注来满足氢需求。微电网的模型是在开源的GNU Octave环境中实现的,并被用来确定本地存储容量的大小。考虑了不同类型的车辆,并区分了系统组件之间的氢压力水平。该模型被应用于垃圾收集车队和位于意大利中部的公用事业公司ASM S.p.A的总部,作为案例研究。143辆汽车的数据集被用来模拟氢动力车队。对三种情况进行了评估:使用i)反向潮流的氢气生产,ii)光伏生产和iii)电网淹没的电力。存储容量取决于不同的场景,在案例研究中,存储容量约为35至47立方米,相比之下,假设外部加油的频率相同,当前柴油加油系统的存储容量为13.6立方米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Battery Management System for Integrated PV, Microinverter and Energy Storage A Comparati`ve Study of Resonant Frequency Calculation Based on Leakage-Inductance and Self-Inductance for CET System Design of Multiband Fractal Antenna for Energy Harvesting Applications Discrete time model of DC-DC buck converter based on the Euler forward difference Simulation and Evaluation of The Solar Energy Systems in The Public Buildings in The City of Tripoli-Libya : Mosques Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1