Social-Aware Joint Uplink and Downlink Resource Allocation Scheme Using Genetic Algorithm

S. Ekwe, L. Akinyemi, S. Oladejo, N. Ventura
{"title":"Social-Aware Joint Uplink and Downlink Resource Allocation Scheme Using Genetic Algorithm","authors":"S. Ekwe, L. Akinyemi, S. Oladejo, N. Ventura","doi":"10.1109/africon51333.2021.9570887","DOIUrl":null,"url":null,"abstract":"This paper investigates a joint uplink and downlink resource allocation problem for a 5G use case. We explore the social-awareness of the network operators to efficiently match users during any form of peer-to-peer communication. Thus, we proposed a peer-selection scheme to improve the overall utility of the network amid limited spectral resources while exploiting the social-ties of network users’. Consequently, we formulate a utility maximization problem as a mixed-integer non-linear programming (MINLP) problem to be solved using genetic algorithm. We perform extensive Monte-Carlo simulations alongside several meta-heuristic algorithms for comparison. The results reveal that our proposed scheme is a good candidate to appreciably and significantly improve the expected utility and network performance.","PeriodicalId":170342,"journal":{"name":"2021 IEEE AFRICON","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE AFRICON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/africon51333.2021.9570887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a joint uplink and downlink resource allocation problem for a 5G use case. We explore the social-awareness of the network operators to efficiently match users during any form of peer-to-peer communication. Thus, we proposed a peer-selection scheme to improve the overall utility of the network amid limited spectral resources while exploiting the social-ties of network users’. Consequently, we formulate a utility maximization problem as a mixed-integer non-linear programming (MINLP) problem to be solved using genetic algorithm. We perform extensive Monte-Carlo simulations alongside several meta-heuristic algorithms for comparison. The results reveal that our proposed scheme is a good candidate to appreciably and significantly improve the expected utility and network performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的社会感知联合上下行资源分配方案
本文研究了一个5G用例的联合上下行资源分配问题。我们探索了网络运营商的社会意识,以便在任何形式的点对点通信中有效地匹配用户。因此,我们提出了一种对等选择方案,以提高有限频谱资源下网络的整体效用,同时利用网络用户的社会关系。因此,我们将效用最大化问题表述为用遗传算法求解的混合整数非线性规划(MINLP)问题。我们执行广泛的蒙特卡罗模拟与几个元启发式算法进行比较。结果表明,我们提出的方案是一个很好的候选方案,可以显着提高预期效用和网络性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Sensory Overstimulation in UE Usage IEEE AFRICON 2021 [Copyright notice] Mobile Application for Gate Pass Management System Enhancement Wireless sensor network for water pipe corrosion monitoring Metasurface based MIMO Microstrip Antenna with Reduced Mutual Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1