{"title":"Estimation of biophysical and functional properties of artery walls from pulse wave measured by photoplethysmography","authors":"M. Huotari, Kari Määttä, J. Kostamovaara","doi":"10.2495/EHR110391","DOIUrl":null,"url":null,"abstract":"Arterial pulse wave analysis in time and frequency domain was carried out to find out biophysical and functional properties of artery walls measured with a photoplethysmographic (PPG) device. Because peripheral arterial disease (PAD) is a fatal problem all over the world, an easy diagnosis method would be needed. It could probably be diagnosed by PPG which is a non-invasive optical technique for detecting the arterial pulse waves. We present a study to characterize and quantify the arterial pulse wave components based on the use of logarithmic normal function (LNF). The measurements were carried out parallel from the index finger and toe tip with healthy subjects. In addition, a second derivative of the PPG signal (SNPPG) was also analyzed. The tests were applied to arterial pulse waves from 11 subjects between 5 and 69 years. The results show good correlation of pulse wave changes as a function of age.","PeriodicalId":370021,"journal":{"name":"WIT Transactions on Biomedicine and Health","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT Transactions on Biomedicine and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/EHR110391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Arterial pulse wave analysis in time and frequency domain was carried out to find out biophysical and functional properties of artery walls measured with a photoplethysmographic (PPG) device. Because peripheral arterial disease (PAD) is a fatal problem all over the world, an easy diagnosis method would be needed. It could probably be diagnosed by PPG which is a non-invasive optical technique for detecting the arterial pulse waves. We present a study to characterize and quantify the arterial pulse wave components based on the use of logarithmic normal function (LNF). The measurements were carried out parallel from the index finger and toe tip with healthy subjects. In addition, a second derivative of the PPG signal (SNPPG) was also analyzed. The tests were applied to arterial pulse waves from 11 subjects between 5 and 69 years. The results show good correlation of pulse wave changes as a function of age.