Phoneme recognition based on distinctive phonetic features (DPFs) incorporating a syllable based language model

M. N. Huda, Manoj Banik, G. Muhammad, Bernd J. Kroger
{"title":"Phoneme recognition based on distinctive phonetic features (DPFs) incorporating a syllable based language model","authors":"M. N. Huda, Manoj Banik, G. Muhammad, Bernd J. Kroger","doi":"10.1109/ICCIT.2009.5407123","DOIUrl":null,"url":null,"abstract":"This paper presents a phoneme recognition method based on distinctive phonetic features (DPFs). The method comprises three stages. The first stage extracts 3 DPF vectors of 15 dimensions each from local features (LFs) of an input speech signal using three multilayer neural networks (MLNs). The second stage incorporates an Inhibition/Enhancement (In/En) network to obtain more categorical DPF movement and decorrelates the DPF vectors using the Gram-Schmidt orthogonalization procedure. Then, the third stage embeds acoustic models (AMs) and language models (LMs) of syllable-based subwords to output more precise phoneme strings. The proposed method provides a higher phoneme correct rate as well as phoneme accuracy with fewer mixture components in hidden Markov models (HMMs).","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a phoneme recognition method based on distinctive phonetic features (DPFs). The method comprises three stages. The first stage extracts 3 DPF vectors of 15 dimensions each from local features (LFs) of an input speech signal using three multilayer neural networks (MLNs). The second stage incorporates an Inhibition/Enhancement (In/En) network to obtain more categorical DPF movement and decorrelates the DPF vectors using the Gram-Schmidt orthogonalization procedure. Then, the third stage embeds acoustic models (AMs) and language models (LMs) of syllable-based subwords to output more precise phoneme strings. The proposed method provides a higher phoneme correct rate as well as phoneme accuracy with fewer mixture components in hidden Markov models (HMMs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于独特语音特征的音素识别,并结合基于音节的语言模型
提出了一种基于显著语音特征的音素识别方法。该方法包括三个阶段。第一阶段使用三个多层神经网络(mln)从输入语音信号的局部特征(LFs)中提取3个各为15维的DPF向量。第二阶段采用抑制/增强(In/En)网络来获得更分类的DPF运动,并使用Gram-Schmidt正交化过程解除DPF向量的关联。然后,第三阶段嵌入基于音节的子词的声学模型(AMs)和语言模型(lm),以输出更精确的音素字符串。该方法在隐马尔可夫模型(hmm)中具有较高的音素正确率和较少的混合成分的音素准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content clustering of Computer Mediated Courseware using data mining technique An audible Bangla text-entry method in Mobile phones with intelligent keypad Design of meandering probe fed microstrip patch antenna for wireless communication system Can Information Retrieval techniques automatic assessment challenges? Logical clock based Last Update Consistency model for Distributed Shared Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1