On Selecting the Relevant Metrics of Network Robustness

J. Marzo, E. Calle, Sergio G. Cosgaya, D. F. Rueda, Andreu Manosa
{"title":"On Selecting the Relevant Metrics of Network Robustness","authors":"J. Marzo, E. Calle, Sergio G. Cosgaya, D. F. Rueda, Andreu Manosa","doi":"10.1109/RNDM.2018.8489809","DOIUrl":null,"url":null,"abstract":"This paper deals with selecting the most relevant metrics with which to measure the robustness of a network. Although earlier efforts have also attempted to do this, there is still no consensus on how to define a single robustness metric. Instead, a large set of metrics regarding the structural, fragmentation, connectivity and centrality properties of a graph have been used. Here, we propose a novel methodology based on the Principal Component Analysis to calculate a single value Robustness* (R*). This is also a consistent way of analyzing how a network behaves under a severe removal of elements. Results show how to select the most relevant metrics for robustness and how to apply them in heterogeneous topologies.","PeriodicalId":340686,"journal":{"name":"2018 10th International Workshop on Resilient Networks Design and Modeling (RNDM)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Workshop on Resilient Networks Design and Modeling (RNDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RNDM.2018.8489809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper deals with selecting the most relevant metrics with which to measure the robustness of a network. Although earlier efforts have also attempted to do this, there is still no consensus on how to define a single robustness metric. Instead, a large set of metrics regarding the structural, fragmentation, connectivity and centrality properties of a graph have been used. Here, we propose a novel methodology based on the Principal Component Analysis to calculate a single value Robustness* (R*). This is also a consistent way of analyzing how a network behaves under a severe removal of elements. Results show how to select the most relevant metrics for robustness and how to apply them in heterogeneous topologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选取网络鲁棒性的相关指标
本文讨论如何选择最相关的指标来衡量网络的鲁棒性。尽管早期的努力也试图做到这一点,但对于如何定义单个健壮性度量仍然没有达成共识。相反,使用了大量关于图的结构、碎片、连通性和中心性属性的度量。在这里,我们提出了一种基于主成分分析的新方法来计算单值稳健性* (R*)。这也是分析网络在严重移除元素时的行为的一致方法。结果显示了如何选择最相关的鲁棒性指标,以及如何将它们应用于异构拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Another Price to Pay: An Availability Analysis for SDN Virtualization with Network Hypervisors Vulnerable Regions of Networks on Sphere SRLG-disjointness and geodiverse routing – a practical network study and operational conclusions [Copyright notice] Monte Carlo Tree Search for Cross-Stratum Optimization of Survivable Inter-Data Center Elastic Optical Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1