DFT modelling of fused silica electronic structure under strong laser-induced excitation

A. Tsaturyan, E. Silaeva, R. Stoian, J. Colombier
{"title":"DFT modelling of fused silica electronic structure under strong laser-induced excitation","authors":"A. Tsaturyan, E. Silaeva, R. Stoian, J. Colombier","doi":"10.1117/12.2620774","DOIUrl":null,"url":null,"abstract":"Fused silica is an indispensable material in emergent photonic applications due to its unique optical, mechanical, and thermal properties, especially when it is nano-structured by an ultrashort laser pulse. The precision of the laser-induced modifications relies heavily on the control of the electron excitations and transient optical properties during the laser pulse. In this work we explore the fused silica band gap at high densities of excited electrons, using Density Functional Theory (DFT). Fused silica is a glass consisting of silica (SiO2) in amorphous form. It includes various structural variations since the topological arrangement of the SiO4 tetrahedra is not unique. We model fused silica as a molecule consisting of six SiO4 tetrahedra. Fused silica geometry parameters (bond lengths and angles) and electronic structure reported experimentally are well reproduced with a reasonable computational demand. Figure 1 shows the gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for molecular structures with different number of SiO4 tetrahedra. The HOMO-LUMO gap in this case represents the optical gap of fused silica measured experimentally.","PeriodicalId":166311,"journal":{"name":"Advances in Ultrafast Condensed Phase Physics III","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Ultrafast Condensed Phase Physics III","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2620774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fused silica is an indispensable material in emergent photonic applications due to its unique optical, mechanical, and thermal properties, especially when it is nano-structured by an ultrashort laser pulse. The precision of the laser-induced modifications relies heavily on the control of the electron excitations and transient optical properties during the laser pulse. In this work we explore the fused silica band gap at high densities of excited electrons, using Density Functional Theory (DFT). Fused silica is a glass consisting of silica (SiO2) in amorphous form. It includes various structural variations since the topological arrangement of the SiO4 tetrahedra is not unique. We model fused silica as a molecule consisting of six SiO4 tetrahedra. Fused silica geometry parameters (bond lengths and angles) and electronic structure reported experimentally are well reproduced with a reasonable computational demand. Figure 1 shows the gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for molecular structures with different number of SiO4 tetrahedra. The HOMO-LUMO gap in this case represents the optical gap of fused silica measured experimentally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光强激发下熔融石英电子结构的DFT建模
熔融二氧化硅由于其独特的光学、机械和热性能,特别是在超短激光脉冲的纳米结构下,是新兴光子应用中不可缺少的材料。激光诱导修饰的精度很大程度上取决于对激光脉冲中电子激发和瞬态光学特性的控制。在这项工作中,我们利用密度泛函理论(DFT)探索了高密度激发电子下熔融二氧化硅带隙。熔融二氧化硅是由无定形的二氧化硅(SiO2)组成的玻璃。由于SiO4四面体的拓扑排列不是唯一的,因此它包括各种结构变化。我们将熔融二氧化硅建模为由六个SiO4四面体组成的分子。实验报道的熔融石英几何参数(键长和键角)和电子结构在合理的计算需求下得到了很好的再现。图1显示了不同数量SiO4四面体分子结构的最高已占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)之间的间隙。在这种情况下,HOMO-LUMO间隙代表了实验测量的熔融二氧化硅的光学间隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 12132 Ultrafast light-induced strain and symmetry breaking in ferroic materials Strong light-matter coupling with intermolecular terahertz vibrations in organic materials Ultrafast photoisomerization studied by time-resolved photoelectron spectroscopy Laser dielectric interactions: new insight from double-pulse experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1