Research on Belt and Road Big Data Visualization Based on Text Clustering Algorithm

Yana Wen, Tingyue Wei, Kewei Cui, Bai Ling, Yahao Zhang, Meng Huang
{"title":"Research on Belt and Road Big Data Visualization Based on Text Clustering Algorithm","authors":"Yana Wen, Tingyue Wei, Kewei Cui, Bai Ling, Yahao Zhang, Meng Huang","doi":"10.1145/3449301.3449322","DOIUrl":null,"url":null,"abstract":"In the era of big data, people's visual needs for data expression are increasing. In order to achieve better big data display effects, this article introduced the use of text clustering algorithms to achieve data crawling and Echarts technology to realize big data visualization. This system used mvvm's architecture and vue framework development platform, ThinkPHP was used as the background framework, and ES6 related technologies and specifications were used for application development. This system used Echarts, IView, GIS technology and JavaScript development methods to demonstrate economic big data module functions on the web side; Applied CSS3, HTML5, GIS technology to implement project achievement module and university alliance module; Applied Echarts, HTML5, JS function library technology to achieve national information module. This system used stored procedure, database index optimization technology to achieve rapid screening of massive data, and dynamically update and displayed related data through two-way data binding. This system combined real-time location technology with GIS technology to measure the distance between the user and the destination, and automatically plan the tour route to provide related services. This system can provide feasibility suggestions for strategic researchers or experts in related areas of the “Belt and Road”, and provide theoretical basis and technical support.","PeriodicalId":429684,"journal":{"name":"Proceedings of the 6th International Conference on Robotics and Artificial Intelligence","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Robotics and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3449301.3449322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of big data, people's visual needs for data expression are increasing. In order to achieve better big data display effects, this article introduced the use of text clustering algorithms to achieve data crawling and Echarts technology to realize big data visualization. This system used mvvm's architecture and vue framework development platform, ThinkPHP was used as the background framework, and ES6 related technologies and specifications were used for application development. This system used Echarts, IView, GIS technology and JavaScript development methods to demonstrate economic big data module functions on the web side; Applied CSS3, HTML5, GIS technology to implement project achievement module and university alliance module; Applied Echarts, HTML5, JS function library technology to achieve national information module. This system used stored procedure, database index optimization technology to achieve rapid screening of massive data, and dynamically update and displayed related data through two-way data binding. This system combined real-time location technology with GIS technology to measure the distance between the user and the destination, and automatically plan the tour route to provide related services. This system can provide feasibility suggestions for strategic researchers or experts in related areas of the “Belt and Road”, and provide theoretical basis and technical support.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于文本聚类算法的“一带一路”大数据可视化研究
在大数据时代,人们对数据表达的视觉需求越来越大。为了实现更好的大数据显示效果,本文介绍了利用文本聚类算法实现数据爬行,利用Echarts技术实现大数据可视化。本系统采用mvvm的体系结构和vue框架开发平台,采用ThinkPHP作为后台框架,应用程序开发采用ES6相关技术和规范。本系统采用Echarts、IView、GIS技术和JavaScript开发方法,在web端展示经济大数据模块功能;应用CSS3、HTML5、GIS技术实现项目成果模块和高校联盟模块;应用Echarts、HTML5、JS函数库技术实现国家信息模块。本系统采用存储过程、数据库索引优化技术,实现对海量数据的快速筛选,并通过双向数据绑定实现相关数据的动态更新和显示。该系统将实时定位技术与GIS技术相结合,测量用户与目的地之间的距离,并自动规划游览路线,提供相关服务。该体系可为“一带一路”相关领域的战略研究者或专家提供可行性建议,提供理论依据和技术支撑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Link Perspective Based Network Embedding for Link Prediction Analysis of Different Encoder-decoder-based Approaches for Biomedical Imaging Segmentation Low Illumination Image Enhancement Based on Image Fusion Multi-focus Image Fusion Based on Multiple CNNs in NSCT Domain A Simple Basic Waveform of Chirp Spread Spectrum Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1