A Wavelet-Based Noise-Aware Method for Fusing Noisy Imagery

Xiaohui Yuan, B. Buckles
{"title":"A Wavelet-Based Noise-Aware Method for Fusing Noisy Imagery","authors":"Xiaohui Yuan, B. Buckles","doi":"10.1109/ICIP.2007.4379602","DOIUrl":null,"url":null,"abstract":"Fusion of images in the presence of noise is a challenging problem. Conventional fusion methods focus on aggregating prominent image features, which usually result in noise enhancement. To address this problem, we developed a wavelet-based, noise-aware fusion method that distinguishes signal and noise coefficients on-the-fly and fuses them with weighted averaging and majority voting respectively. Our method retains coefficients that reconstruct salient features, whereas noise components are discarded. The performance is evaluated in terms of noise removal and feature retention. The comparisons with five state-of-the-art fusion methods and a combination with denoising method demonstrated that our method significantly outperformed the existing techniques with noisy inputs.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Fusion of images in the presence of noise is a challenging problem. Conventional fusion methods focus on aggregating prominent image features, which usually result in noise enhancement. To address this problem, we developed a wavelet-based, noise-aware fusion method that distinguishes signal and noise coefficients on-the-fly and fuses them with weighted averaging and majority voting respectively. Our method retains coefficients that reconstruct salient features, whereas noise components are discarded. The performance is evaluated in terms of noise removal and feature retention. The comparisons with five state-of-the-art fusion methods and a combination with denoising method demonstrated that our method significantly outperformed the existing techniques with noisy inputs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的噪声感知图像融合方法
存在噪声的图像融合是一个具有挑战性的问题。传统的融合方法主要集中在聚集突出的图像特征,这通常会导致噪声增强。为了解决这个问题,我们开发了一种基于小波的噪声感知融合方法,该方法可以实时区分信号和噪声系数,并分别使用加权平均和多数投票进行融合。我们的方法保留了重建显著特征的系数,而丢弃了噪声成分。性能评估方面的噪声去除和特征保留。通过与五种最先进的融合方法的比较以及与去噪方法的结合表明,我们的方法明显优于现有的带有噪声输入的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1