{"title":"Application of Genetic Algorithms for Optimization of Anycast Routing in Delay and Disruption Tolerant Networks","authors":"Éderson Rosa Da Silva, P. R. Guardieiro","doi":"10.4018/978-1-61350-092-7.CH011","DOIUrl":null,"url":null,"abstract":"Delay and disruption tolerant networks (DTNs) have the capacity of providing data communication to remote and rural areas where current networking technology does not work well. In such challenging areas characterized by long duration partition, routing is a common problem. Anycast routing can be used for many applications in DTNs, and it is useful when nodes wish to send messages to at least one, and preferably only one, of the members in an anycast destination group. In this chapter, an anycast routing algorithm for DTNs based on genetic algorithms (GAs) is presented and analyzed. The GA is applied to find the appropriate combination of each path to comply with the delivery needs of the group of anycast sessions simultaneously. The routing algorithm based on GAs under consideration uses the concept of subpopulation to produce the next generation of the population, a limited number of solutions to be evaluated, and yields minimum delay in achieving a specified rate of delivery. Simulation results show that the studied GA-based anycast routing algorithm can produce good results.","PeriodicalId":222328,"journal":{"name":"Biologically Inspired Networking and Sensing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologically Inspired Networking and Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-61350-092-7.CH011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Delay and disruption tolerant networks (DTNs) have the capacity of providing data communication to remote and rural areas where current networking technology does not work well. In such challenging areas characterized by long duration partition, routing is a common problem. Anycast routing can be used for many applications in DTNs, and it is useful when nodes wish to send messages to at least one, and preferably only one, of the members in an anycast destination group. In this chapter, an anycast routing algorithm for DTNs based on genetic algorithms (GAs) is presented and analyzed. The GA is applied to find the appropriate combination of each path to comply with the delivery needs of the group of anycast sessions simultaneously. The routing algorithm based on GAs under consideration uses the concept of subpopulation to produce the next generation of the population, a limited number of solutions to be evaluated, and yields minimum delay in achieving a specified rate of delivery. Simulation results show that the studied GA-based anycast routing algorithm can produce good results.