Juraj Orsuli'c, Robert Milijas, Ana Batinovic, Lovro Markovic, Antun Ivanovic, S. Bogdan
{"title":"Flying with Cartographer: Adapting the Cartographer 3D Graph SLAM Stack for UAV Navigation","authors":"Juraj Orsuli'c, Robert Milijas, Ana Batinovic, Lovro Markovic, Antun Ivanovic, S. Bogdan","doi":"10.1109/AIRPHARO52252.2021.9571065","DOIUrl":null,"url":null,"abstract":"This paper describes an application of the Cartographer graph SLAM stack as a pose sensor in a UAV feedback control loop, with certain application-specific changes in the SLAM stack such as smoothing of the optimized pose. Pose estimation is performed by fusing 3D LiDAR/IMU-based proprioception with GPS position measurements by means of pose graph optimisation. Moreover, partial environment maps built from the LiDAR data (submaps) within the Cartographer SLAM stack are marshalled into OctoMap, an Octree-based voxel map implementation. The OctoMap is further used for navigation tasks such as path planning and obstacle avoidance.","PeriodicalId":415722,"journal":{"name":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIRPHARO52252.2021.9571065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper describes an application of the Cartographer graph SLAM stack as a pose sensor in a UAV feedback control loop, with certain application-specific changes in the SLAM stack such as smoothing of the optimized pose. Pose estimation is performed by fusing 3D LiDAR/IMU-based proprioception with GPS position measurements by means of pose graph optimisation. Moreover, partial environment maps built from the LiDAR data (submaps) within the Cartographer SLAM stack are marshalled into OctoMap, an Octree-based voxel map implementation. The OctoMap is further used for navigation tasks such as path planning and obstacle avoidance.