A fast implementation of MLR-MCL algorithm on multi-core processors

Q. Niu, Pai-Wei Lai, S. M. Faisal, S. Parthasarathy, P. Sadayappan
{"title":"A fast implementation of MLR-MCL algorithm on multi-core processors","authors":"Q. Niu, Pai-Wei Lai, S. M. Faisal, S. Parthasarathy, P. Sadayappan","doi":"10.1109/HiPC.2014.7116888","DOIUrl":null,"url":null,"abstract":"Widespread use of stochastic flow based graph clustering algorithms, e.g. Markov Clustering (MCL), has been hampered by their lack of scalability and fragmentation of output. Multi-Level Regularized Markov Clustering (MLR-MCL) is an improvement over Markov Clustering (MCL), providing faster performance and better quality of clusters for large graphs. However, a closer look at MLR-MCL's performance reveals potential for further improvement. In this paper we present a fast parallel implementation of MLR-MCL algorithm via static work partitioning based on analysis of memory footprints. By parallelizing the most time consuming region of the sequential MLR-MCL algorithm, we report up to 10.43x (5.22x in average) speedup on CPU, using 8 datasets from SNAP and 3 PPI datasets. In addition, our algorithm can be adapted to perform general sparse matrix-matrix multiplication (SpGEMM), and our experimental evaluation shows up to 3.50x (1.92x in average) speedup on CPU, and up to 5.12x (2.20x in average) speedup on MIC, comparing to the SpGEMM kernel provided by Intel Math Kernel Library (MKL).","PeriodicalId":337777,"journal":{"name":"2014 21st International Conference on High Performance Computing (HiPC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2014.7116888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Widespread use of stochastic flow based graph clustering algorithms, e.g. Markov Clustering (MCL), has been hampered by their lack of scalability and fragmentation of output. Multi-Level Regularized Markov Clustering (MLR-MCL) is an improvement over Markov Clustering (MCL), providing faster performance and better quality of clusters for large graphs. However, a closer look at MLR-MCL's performance reveals potential for further improvement. In this paper we present a fast parallel implementation of MLR-MCL algorithm via static work partitioning based on analysis of memory footprints. By parallelizing the most time consuming region of the sequential MLR-MCL algorithm, we report up to 10.43x (5.22x in average) speedup on CPU, using 8 datasets from SNAP and 3 PPI datasets. In addition, our algorithm can be adapted to perform general sparse matrix-matrix multiplication (SpGEMM), and our experimental evaluation shows up to 3.50x (1.92x in average) speedup on CPU, and up to 5.12x (2.20x in average) speedup on MIC, comparing to the SpGEMM kernel provided by Intel Math Kernel Library (MKL).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MLR-MCL算法在多核处理器上的快速实现
广泛使用的基于随机流的图聚类算法,如马尔可夫聚类(MCL),由于缺乏可扩展性和输出碎片化而受到阻碍。多层正则化马尔可夫聚类(MLR-MCL)是对马尔可夫聚类(MCL)的改进,为大型图提供更快的性能和更好的聚类质量。然而,仔细观察MLR-MCL的性能可以发现进一步改进的潜力。在本文中,我们提出了一种基于内存占用分析的静态工作划分的MLR-MCL算法的快速并行实现。通过并行化顺序MLR-MCL算法最耗时的区域,我们报告了CPU加速高达10.43倍(平均5.22倍),使用来自SNAP的8个数据集和3个PPI数据集。此外,我们的算法可以适应于执行一般稀疏矩阵矩阵乘法(SpGEMM),我们的实验评估表明,与英特尔数学内核库(MKL)提供的SpGEMM内核相比,我们的算法在CPU上的加速高达3.50倍(平均1.92倍),在MIC上的加速高达5.12倍(平均2.20倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and evaluation of parallel hashing over large-scale data Scaling graph community detection on the Tilera many-core architecture Cache-conscious scheduling of streaming pipelines on parallel machines with private caches A high performance broadcast design with hardware multicast and GPUDirect RDMA for streaming applications on Infiniband clusters Saving energy by exploiting residual imbalances on iterative applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1